已知函數(shù)f(x)的定義域?yàn)椋?,1],且同時(shí)滿足:①f(1)=3;②f(x)≥2對(duì)一切x∈[0,1]恒成立;③若x1≥0,x2≥0,x1+x2≤1,則f(x1+x2)≥f(x1)+f(x2)-2.

(1)求函數(shù)f(x)的最大值和最小值;

(2)試比較f()與+2的大小;

(3)某同學(xué)發(fā)現(xiàn):當(dāng)x=(n∈N)時(shí),有f(x)<2x+2,由此他提出猜想:對(duì)一切x∈(0,1],都有f(x)<2x+2,請(qǐng)你判斷此猜想是否正確,并說(shuō)明理由.

解:(1)設(shè)x1,x2∈[0,1],x1<x2,則x2-x1∈[0,1].

∴f(x2)=f[(x2-x1)+x1]≥f(x2-x1)+f(x1)-2.

∴f(x2)-f(x1)≥f(x2-x1)-2≥0.

∴f(x1)≤f(x2).

則當(dāng)0≤x≤1時(shí),f(0)≤f(x)≤f(1).

在③中,令x1=x2=0,得f(0)≤2,

由②得f(0)≥2,∴f(0)=2.

∴當(dāng)x=0時(shí),f(x)取得最小值為2;

當(dāng)x=1時(shí),f(x)取得最大值為3.

(2)在③中,令x1=x2=,得f()≥2f()-2,

∴f()-2≤[f()-2]≤[f()-2]≤…≤[f()-2]=,

即f()≤+2.

(3)對(duì)x∈[0,1],總存在n∈N,滿足<x≤.

由(1)與(2),得f(x)≤f()≤+2,

又2x+2>2·+2=+2,

∴f(x)<2x+2.

綜上所述,對(duì)任意x∈[0,1],f(x)<2x+2恒成立.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
1
3
x3+
a-3
2
x2+(a2-3a)x-2a

(I)如果對(duì)任意x∈[1,2],f′(x)>a2恒成立,求實(shí)數(shù)a的取值范圍;
(II)設(shè)函數(shù)f(x)的兩個(gè)極值點(diǎn)分別為x1,x2判斷下列三個(gè)代數(shù)式:①x1+x2+a,②
x
2
1
+
x
2
2
+a2
,③
x
3
1
+
x
3
2
+a3

中有幾個(gè)為定值?并且是定值請(qǐng)求出;若不是定值,請(qǐng)把不是定值的表示為函數(shù)g(a),并求出g(a)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

問(wèn)題1:已知函數(shù)f(x)=
x
1+x
,則f(
1
10
)+f(
1
9
)+
+f(
1
2
)+f(1)+f(2)+
…+f(9)+f(10)=
19
2
19
2

我們?nèi)舭衙恳粋(gè)函數(shù)值計(jì)算出,再求和,對(duì)函數(shù)值個(gè)數(shù)較少時(shí)是常用方法,但函數(shù)值個(gè)數(shù)較多時(shí),運(yùn)算就較繁鎖.觀察和式,我們發(fā)現(xiàn)f(
1
2
)+f(2)
、…、f(
1
9
)+f(9)
、f(
1
10
)+f(10)
可一般表示為f(
1
x
)+f(x)
=
1
x
1+
1
x
+
x
1+x
=
1
1+x
+
x
1+x
=
1+x
1+x
=1
為定值,有此規(guī)律從而很方便求和,請(qǐng)求出上述結(jié)果,并用此方法求解下面問(wèn)題:
問(wèn)題2:已知函數(shù)f(x)=
1
2x+
2
,求f(-2007)+f(-2006)+…+f(-1)+f(0)+f(1)+…+f(2007)+f(2008)的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=log3
3
x
1-x
,M(x1,y1),N(x2,y2)
是f(x)圖象上的兩點(diǎn),橫坐標(biāo)為
1
2
的點(diǎn)P是M,N的中點(diǎn).
(1)求證:y1+y2為定值;
(2)若Sn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
(n∈N*,n≥2),求
lim
n→∞
4Sn-9Sn
4Sn+1+9Sn+1
的值;
(3)在(2)的條件下,若an=
1
6
,n=1
1
4(Sn+1)(Sn+1+1)
,n≥2
(n∈N*),Tn為數(shù)列{an}的前n項(xiàng)和,若Tn<m(Sn+1+1)對(duì)一切n∈N*都成立,試求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=
x+1-a
a-x
(x≠a)

(1)當(dāng)f(x)的定義域?yàn)?span id="n4fccpj" class="MathJye">[a+
1
2
,a+1]時(shí),求f(x)的值域;
(2)試問(wèn)對(duì)定義域內(nèi)的任意x,f(2a-x)+f(x)的值是否為一個(gè)定值?若是,求出這個(gè)定值;若不是,說(shuō)明理由;
(3)設(shè)函數(shù)g(x)=x2+|(x-a)f(x)|,若
1
2
≤a≤
3
2
,求g(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2009•嘉定區(qū)一模)(理)已知函數(shù)f(x)=log2
2
x
1-x
,P1(x1,y1)、P2(x2,y2)是f(x)圖象上兩點(diǎn).
(1)若x1+x2=1,求證:y1+y2為定值;
(2)設(shè)Tn=f(
1
n
)+f(
2
n
)+…+f(
n-1
n
)
,其中n∈N*且n≥2,求Tn關(guān)于n的解析式;
(3)對(duì)(2)中的Tn,設(shè)數(shù)列{an}滿足a1=2,當(dāng)n≥2時(shí),an=4Tn+2,問(wèn)是否存在角a,使不等式(1-
1
a1
)(1-
1
a2
)
(1-
1
an
)<
sinα
2n+1
對(duì)一切n∈N*都成立?若存在,求出角α的取值范圍;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案