【題目】某池塘中原有一塊浮草,浮草蔓延后的面積y(m2)與時(shí)間t(月)之間的函數(shù)關(guān)系是y=at﹣1(a>0,且a≠1),它的圖象如圖所示.給出以下命題: ①池塘中原有浮草的面積是0.5m2;
②到第7個(gè)月浮草的面積一定能超過60m2
③浮草每月增加的面積都相等;
④若浮草面積達(dá)到4m2 , 16m2 , 64m2所經(jīng)過時(shí)間分別為t1 , t2 , t3 , 則t1+t2<t3 , 其中所有正確命題的序號(hào)是( )
A.①②
B.①④
C.②③
D.②④
【答案】A
【解析】解答:根據(jù)圖象過點(diǎn)(2,2)可知點(diǎn)(2,2)適合y=at﹣1即2=a
∴函數(shù)關(guān)系是y=2t﹣1
令t=0時(shí),y= =0.5,故①正確;
令t=7時(shí),y=26=64>60,故②正確;
當(dāng)t=1時(shí),y=1,增加0.5,當(dāng)t=2時(shí),y=2,增加1,每月增加的面積不相等,故③不正確;
分別令y=4、16、64,解得t1=3,t2=5,t3=7,t1+t2>t3 , 故④不正確.
其中所有正確命題的序號(hào)是:①②
故選A.
分析:先根據(jù)圖象經(jīng)過點(diǎn)(2,2)求出a,代入函數(shù)的解析式,即可求出底數(shù)a,進(jìn)而即可求出這個(gè)指數(shù)函數(shù)的表達(dá)式;然后對(duì)各個(gè)選擇支進(jìn)行逐一判斷即可.令t=0時(shí),y= =0.5即可對(duì)①進(jìn)行判斷;對(duì)于②,將t=7代入函數(shù)的解析式,即可求出第7個(gè)月時(shí)浮萍的面積;對(duì)于③,當(dāng)t=1時(shí),和當(dāng)t=2時(shí),計(jì)算這兩個(gè)月增加的面積;分別將y=4、16、64分別代入函數(shù)解析式,求出對(duì)應(yīng)的t值,即可對(duì)于④進(jìn)行判斷.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】(本題滿分12分)如圖13,四棱錐P ABCD中,底面ABCD為矩形,PA⊥平面ABCD,E為PD的中點(diǎn).
(1)證明:PB∥平面AEC;
(2)設(shè)AP=1,AD=,三棱錐P ABD的體積V=,求A到平面PBC的距離.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知在四棱錐S﹣ABCD中,底面ABCD是菱形,且∠BCD=60°,側(cè)面SAB是正三角形,且面SAB⊥面ABCD,F(xiàn)為SD的中點(diǎn).
(1)證明:SB∥面ACF;
(2)求面SBC與面SAD所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)對(duì)任意的x,y∈R,總有f(x)+f(y)=f(x+y),且x<0時(shí),f(x)>0.
(1)求證:函f(x)是奇函數(shù);
(2)求證:函數(shù)f(x)是R上的減函數(shù);
(3)若定義在(﹣2,2)上的函數(shù)f(x)滿足f(﹣m)+f(1﹣m)<0,求實(shí)數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出三種函數(shù)模型:f(x)=xn(n>0),g(x)=ax(a>1)和h(x)=logax(a>1).根據(jù)它們?cè)鲩L的快慢,則一定存在正實(shí)數(shù)x0 , 當(dāng)x>x0時(shí),就有( )
A.f(x)>g(x)>h(x)
B.h(x)>g(x)>f(x)
C.f(x)>h(x)>g(x)
D.g(x)>f(x)>h(x)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,三棱柱的所有棱長均為2,平面平面, , 為的中點(diǎn).
(1)證明: ;
(2)若是棱的中點(diǎn),求二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)y=f (x)= .
(1)求函數(shù)f (x)的圖象在x= 處的切線方程;
(2)求y=f(x)的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知數(shù)列{an}滿足al=﹣2,an+1=2an+4.
(I)證明數(shù)列{an+4}是等比數(shù)列;
(Ⅱ)求數(shù)列{|an|}的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)的定義域?yàn)椋ī?,2),函數(shù)g(x)=f(x﹣1)+f(3﹣2x).
(1)求函數(shù)g(x)的定義域;
(2)若f(x)是奇函數(shù)且在定義域內(nèi)單調(diào)遞減,求不等式g(x)≤0的解集
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com