隨機變量ξ的分布列如右表所示,則Eξ=
0.24
0.24
;
ξ -1 0 1
P m2 1-1.4m 0.4
分析:先根據(jù)離散型隨機變量所有取值的概率和為1,可求m的值,進而可求期望.
解答:解:由題意知,m2+1-1.4m+0.4=1,
∴m=0.4
∴Eξ=-0.16+0.4=0.24
故答案為0.24.
點評:本題以分布列為載體,考查概率的性質(zhì),考查數(shù)學(xué)期望,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知離散型隨機變量X的分布列如表.若EX=0,DX=1,則a=
 
,b=
 
X -1 0 1 2
P a b c
1
12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)若離散型隨機變量X的分布列如圖,則常數(shù)c的值為( 。
A、
2
3
1
3
B、
2
3
C、
1
3
D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知隨機變量X的分布列如圖:其中m,n∈[0,1),且E(X)=
1
6
,則m,n的值分別為( 。
A、
1
12
,
1
2
B、
1
6
,
1
6
C、
1
4
,
1
3
D、
1
3
,
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知離散型隨機變量X 的分布列如右圖.若E(X)=0,D(X)=1,則a、b、c的值依次為
5
12
1
4
,
1
4
5
12
,
1
4
,
1
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知離散型隨機變量x的分布列如右表.若Eξ=0,Dξ=1,則符合條件的一組數(shù)(a,b,c)=
 

查看答案和解析>>

同步練習(xí)冊答案