8.已知F1(0,-1),F(xiàn)2(0,1)是橢圓的兩個(gè)焦點(diǎn),過(guò)F1的直線l交橢圓于M,N兩點(diǎn),若△MF2N的周長(zhǎng)為8,則橢圓方程為( 。
A.$\frac{{y}^{2}}{16}$+$\frac{{x}^{2}}{15}$=1B.$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{15}$=1C.$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{3}$=1D.$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1

分析 由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0).△MF2N的周長(zhǎng)為8,可得4a=8,又c=1,a2=b2+c2,聯(lián)立解出即可得出.

解答 解:由題意可設(shè)橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0).
∵△MF2N的周長(zhǎng)為8,∴4a=8,又c=1,a2=b2+c2
解得a=2,b2=3.
可得橢圓的標(biāo)準(zhǔn)方程為:$\frac{{y}^{2}}{4}$+$\frac{{x}^{2}}{3}$=1.
故選:D.

點(diǎn)評(píng) 本題考查了橢圓的定義標(biāo)準(zhǔn)方程及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

18.圓x2+y2-4x+2y=0上一點(diǎn)P(1,1)的圓的切線方程為:x-2y+1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.設(shè)a=cos50°cos127°+cos40°cos37°,b=$\frac{\sqrt{2}}{2}$(sin56°-cos56°),c=$\frac{1-ta{n}^{2}39°}{1+ta{n}^{2}39°}$,則a,b,c的大小關(guān)系是(  )
A.a>b>cB.b>a>cC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.已知正項(xiàng)數(shù)列{an} 中,$\sqrt{{a}_{1}}$+$\sqrt{{a}_{2}}$+…+$\sqrt{{a}_{n}}$=$\frac{n(n+1)}{2}$(n∈N*),則數(shù)列{an}的通項(xiàng)公式為(  )
A.an=nB.an=n2C.an=$\frac{n}{2}$D.an=$\frac{{n}^{2}}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.已知點(diǎn)M到定點(diǎn)F(1,0)和定直線x=4的距離之比為$\frac{1}{2}$,設(shè)動(dòng)點(diǎn)M的軌跡為曲線C.
(1)求曲線C的方程;
(2)設(shè)P(4,0),過(guò)點(diǎn)F作斜率不為0的直線l與曲線C交于兩點(diǎn)A,B,設(shè)直線PA,PB的斜率分別是k1,k2,求k1+k2的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知圓C的方程為x2+y2=1,直線l的方程為x+y=2,過(guò)圓C上任意一點(diǎn)P作與l夾角為45°的直線交l于A,則|PA|的最小值為( 。
A.$\frac{1}{2}$B.1C.$\sqrt{2}-1$D.$2-\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

20.已知三棱錐A-BCD,AD⊥平面BCD,BD⊥CD,AD=BD=2,CD=2$\sqrt{3}$,E,F(xiàn)分別是AC,BC的中點(diǎn).
(1)P為線段BC上一點(diǎn).且CP=2PB,求證:AP⊥DE.
(2)求直線AC與平面DEF所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知f(x)=x-2,g(x)=2x-5,則不等式|f(x)|+|g(x)|≤2的解集為[$\frac{5}{3}$,3];|f(2x)|+|g(x)|的最小值為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知函數(shù)f(x)=$\frac{1}{2}$x2-(a+1)x+alnx+1.
(Ⅰ)若x=3是f(x)的極值點(diǎn),求f(x)的單調(diào)區(qū)間;
(Ⅱ)f(x)≥1恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案