14.設(shè)甲、乙兩樓相距10m,從乙樓底望甲樓頂?shù)难鼋菫?0°,從甲樓頂望乙樓頂?shù)母┙菫?0°,則甲、乙兩樓的高分別是(  )
A.$\frac{10\sqrt{3}}{3}$m,$\frac{40}{3}$$\sqrt{3}$ mB.10$\sqrt{3}$ m,20$\sqrt{3}$ mC.10($\sqrt{3}$-$\sqrt{2}$) m,20$\sqrt{3}$ mD.10$\sqrt{3}$ m,$\frac{40}{3}$$\sqrt{3}$ m

分析 作出示意圖,根據(jù)三角函數(shù)的定義即可求出兩樓高.

解答 解:設(shè)甲,乙兩樓為AB,CD,由題意可知BC=10,∠ACB=60°,∠DAE=30°,
∵tan∠ACB=$\frac{AB}{BC}$=$\sqrt{3}$,∴AB=10$\sqrt{3}$,
由AE=BC=10,tan∠DAE=$\frac{DE}{AE}$=$\frac{\sqrt{3}}{3}$,
∴DE=$\frac{10\sqrt{3}}{3}$,
∴CD=CE+DE=AB+DE=$\frac{40\sqrt{3}}{3}$.
故選D.

點(diǎn)評(píng) 本題考查了解三角形的實(shí)際應(yīng)用,作出圖形是解題關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c已知c•cosB+(b-2a)cosC=0
(1)求角C的大小
(2)若c=2,a+b=ab,求△ABC的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.一個(gè)學(xué)生通過(guò)某次數(shù)學(xué)測(cè)試的概率是$\frac{3}{4}$,他連續(xù)測(cè)試n次,要保證他至少有一次通過(guò)的概率大于0.99,那么n的最小值為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知數(shù)列{an}是等差數(shù)列,a2=3,a6=7,則a11的值為( 。
A.11B.12C.13D.10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知x>0,y>0,求證:$x+y≤\frac{y^2}{x}+\frac{x^2}{y}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

19.已知三次函數(shù)$f(x)=\frac{1}{3}{x^3}-({4m-1}){x^2}+({15{m^2}-2m-7})x+2$在x∈(-∞,+∞)是增函數(shù),則m的取值范圍是( 。
A.m<2或m>4B.-4<m<-2C.2<m<4D.以上皆不正確

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知sinθ+cosθ=$\frac{1}{5}$,θ∈(0,π).
(1)求tanθ的值;
(2)求$\frac{1-2sinθcosθ}{{{{cos}^2}θ-{{sin}^2}θ}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.已知-1≤a≤3,2≤b≤4,則2a-b的取值范圍是( 。
A.[-6,4]B.[0,10]C.[-4,2]D.[-5,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.某棱柱的三視圖如圖示,則該棱柱的體積為( 。
A.3B.4C.6D.12

查看答案和解析>>

同步練習(xí)冊(cè)答案