【題目】下列關于隨機變量及分布的說法正確的是(

A.拋擲均勻硬幣一次,出現(xiàn)正面的次數(shù)是隨機變量

B.某人射擊時命中的概率為0.5,此人射擊三次命中的次數(shù)服從兩點分布

C.離散型隨機變量的分布列中,隨機變量取各個值的概率之和可以小于1

D.離散型隨機變量的各個可能值表示的事件是彼此互斥的

【答案】AD

【解析】

對于選項A:拋擲均勻硬幣一次,出現(xiàn)正面的次數(shù)可能是0,也可能是1,故是隨機變量,故選項A正確;

對于選項B:某人射擊時命中的概率為0.5,此人射擊三次是三次獨立重復實驗,命中的次數(shù)服從二項分布而不是兩點分布,故選項B錯誤;

對于選項C:離散型隨機變量的分布列中,隨機變量取各個值的概率之和一定等于1,故選項C錯誤;

對于選項D:由互斥事件的定義可知選項D正確.

故選:AD

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】為了鼓勵市民節(jié)約用電,某市實行“階梯式”電價,將每戶居民的月用電量分為二檔,月用電量不超過200度的部分按0.5元/度收費,超過200度的部分按0.8元/度收費.某小區(qū)共有居民1000戶,為了解居民的用電情況,通過抽樣,獲得了今年7月份100戶居民每戶的用電量,統(tǒng)計分析后得到如圖所示的頻率分布直方圖.

(1)求的值;

(2)試估計該小區(qū)今年7月份用電量用不超過260元的戶數(shù);

(3)估計7月份該市居民用戶的平均用電費用(同一組中的數(shù)據(jù)用該組區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】(題文)如圖,長方形材料中,已知,.點為材料內(nèi)部一點,,且,. 現(xiàn)要在長方形材料中裁剪出四邊形材料,滿足,點、分別在邊上.

(1)設,試將四邊形材料的面積表示為的函數(shù),并指明的取值范圍;

(2)試確定點上的位置,使得四邊形材料的面積最小,并求出其最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】有一段“三段論”,其推理是這樣的:對于可導函數(shù),若,則是函數(shù)的極值點,因為函數(shù)滿足,所以是函數(shù)的極值點”,結論以上推理  

A. 大前提錯誤B. 小前提錯誤C. 推理形式錯誤D. 沒有錯誤

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知為拋物線上的兩個動點,點在第一象限,點在第四象限,分別過點且與拋物線相切,的交點.

)若直線過拋物線的焦點,求證動點在一條定直線上,并求此直線方程;

)設為直線與直線的交點,求面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知)是R上的奇函數(shù),且.

1)求的解析式;

2)若關于x的方程在區(qū)間內(nèi)只有一個解,求m的取值集合;

3)設,記,是否存在正整數(shù)n,使不得式對一切均成立?若存在,求出所有n的值,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在人群流量較大的街道,有一中年人吆喝送錢,只見他手拿一黑色小布袋,袋中有3只黃色、3只白色的乒乓球(其體積、質(zhì)地完成相同),旁邊立著一塊小黑板寫道:

摸球方法:從袋中隨機摸出3個球,若摸得同一顏色的3個球,攤主送給摸球者5元錢;若摸得非同一顏色的3個球,摸球者付給攤主1元錢.

1)摸出的3個球為白球的概率是多少?

2)摸出的3個球為2個黃球1個白球的概率是多少?

3)假定一天中有100人次摸獎,試從概率的角度估算一下這個攤主一個月(按30天計)能賺多少錢?

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】一個不透明的箱子中裝有大小形狀相同的5個小球,其中2個白球標號分別為,,3個紅球標號分別為,,現(xiàn)從箱子中隨機地一次取出兩個球.

(1)求取出的兩個球都是白球的概率;

(2)求取出的兩個球至少有一個是白球的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】下列有關命題的說法正確的是( )

A. ,使得成立.

B. 命題:任意,都有,則:存在,使得

C. 命題“若,則”的逆命題為真命題.

D. 若數(shù)列是等比數(shù)列,的必要不充分條件.

查看答案和解析>>

同步練習冊答案