A. | (4,+∞) | B. | $[3+2\sqrt{2}\;\;,\;\;+∞)$ | C. | [6,+∞) | D. | $(4\;\;,\;\;3+2\sqrt{2}]$ |
分析 根據(jù)函數(shù)的解析式德,得到b=$\frac{1}{a-1}$+1,再利用基本不等式即可求出2a+b的范圍
解答 解:∵函數(shù)f(x)=|ln(x-1)|,f(a)=f(b),且x>1,
∴-ln(a-1)=ln(b-1),
∴$\frac{1}{a-1}$=b-1,
∴b=$\frac{1}{a-1}$+1,
∴a+2b=a+$\frac{2}{a-1}$+2=a-1+$\frac{2}{a-1}$+3≥3+2$\sqrt{(a-1)•\frac{2}{a-1}}$=3+2$\sqrt{2}$,當(dāng)且僅當(dāng)a=$\sqrt{2}$+1取等號,
∴a+2b的取值范圍是[3+2$\sqrt{2}$,+∞)
故選:B
點(diǎn)評 本題考查了函數(shù)的圖象和基本不等式,對數(shù)函數(shù)的性質(zhì),屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 600立方寸 | B. | 610立方寸 | C. | 620立方寸 | D. | 633立方寸 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com