如圖,四棱錐中,底面是平行四邊形,平面,,,的中點(diǎn).
(1)求證:平面
(2)求平面與平面所成銳二面角的余弦值.
(1)見解析;(2).

試題分析:(1)利用直線與平面垂直的性質(zhì)定理以及判定定理即可證明.,所以平面 ;
(2)利用空間向量求解,平面與平面所成銳二面角的余弦值即為兩平面的法向量所成角或補(bǔ)角的余弦值.以點(diǎn)為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,可求平面的一個(gè)法向量;平面的一個(gè)法向量,所以則.
(1)平面平面,
由已知條件得:,,所以平面   (5分)
由(1)結(jié)合已知條件以點(diǎn)為原點(diǎn),分別為軸建立空間直角坐標(biāo)系,則:
,,,,所以
        7分
設(shè)是平面的一個(gè)法向量,則,
即:,取,則得:          
同理可求:平面的一個(gè)法向量     10分
設(shè):平面和平面成角為
     12分
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖所示,平面平面,且四邊形為矩形,四邊形為直角梯形,,,
(1)求證平面;(2)求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,,底面為梯形,,且.(10分)

(1)求證:;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,三棱柱ABC-A1B1C1中,點(diǎn)A1在平面ABC內(nèi)的射影D在AC上,∠ACB=90,BC=1,AC=CC1=2.
(1)證明:AC1⊥A1B;
(2)設(shè)直線AA1與平面BCC1B1的距離為,求二面角A1-AB-C的大小.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
在平行四邊形中,.將沿折起,使得平面平面,如圖.

(1)求證:
(2)若中點(diǎn),求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四面體兩兩垂直,的中點(diǎn),的中點(diǎn).
(1)建立適當(dāng)?shù)淖鴺?biāo)系,寫出點(diǎn)的坐標(biāo);
(2)求與底面所成的角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知,是不重合的兩條直線,是不重合的兩個(gè)平面.下列命題:①若,,則; ②若,,則;③若,,則;④若,,則.其中所有真命題的序號(hào)是       

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

設(shè)m,n是兩條不同的直線,,是兩個(gè)不同的平面.則下列命題中正確的是(    )
A.m⊥,n,m⊥nB.,=m,n⊥mn⊥
C.,m⊥,n∥m⊥nD.,m⊥,n∥m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

如圖是一幾何體的平面展開圖,其中ABCD為正方形,E,F分別為PA,PD的中點(diǎn),在此幾何體中,給出下面四個(gè)結(jié)論:

①直線BE與直線CF異面;
②直線BE與直線AF異面;
③直線EF∥平面PBC;
④平面BCE⊥平面PAD.
其中正確的有__________.

查看答案和解析>>

同步練習(xí)冊答案