如圖,正方形A1BA2C的邊長為4,D是A1B的中點,E是BA2上的點,將△A1DC
及△A2EC分別沿DC和EC折起,使A1、A2重合于A,且平面ADC⊥平面EAC.
(1)求證:AC⊥DE;

(2)求二面角A-DE-C的余弦值。
(1)證明過程詳見試題解析;(2)二面角的余弦值為.

試題分析:(1)由已知條件證出互相垂直,以為坐標(biāo)系原點建立空間坐標(biāo)系,寫出各點坐標(biāo),求出即證得AC⊥DE;(2)先求出平面DCE的法向量,平面的法向量,兩法向量的夾角即為所求.
∵平面平面,且
平面,∴
設(shè),在Rt,
,∴中點
分別以AD,AE,AC為x軸,y軸,z軸建立空間直角坐標(biāo)系

(1)

(2)設(shè)平面DCE的法向量為
,且
,
平面,∴平面的法向量為.
∴二面角的余弦值為
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四棱錐中,,,,平面⊥平面是線段上一點,,
(1)證明:⊥平面
(2)若,求直線與平面所成角的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在梯形ABCD中,AB//CD,AD=DC=CB=a,,平面平面ABCD,四邊形ACFE是矩形,AE=a.
(1)求證:平面ACFE;
(2)求二面角B—EF—D的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如下圖,在三棱錐中,底面,點為以為直徑的圓上任意一動點,且,點的中點,且交于點.
(1)求證:;
(2)當(dāng)時,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,底面是邊長為2的菱形,且,以為底面分別作相同的正三棱錐,且.

(1)求證:平面;
(2)求平面與平面所成銳角二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知在四棱錐P-ABCD中,底面ABCD是矩形,且AD=2,AB=1,PA⊥平面ABCD,E、F分別是線段AB、BC的中點.

(1)證明:PF⊥FD;
(2)判斷并說明PA上是否存在點G,使得EG∥平面PFD;
(3)若PB與平面ABCD所成的角為45°,求二面角A-PD-F的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在斜三棱柱中,O是AC的中點,平面,.

(1)求證:平面;
(2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)動點P在棱長為1的正方體ABCD-A1B1C1D1的對角線BD1上,記=λ.當(dāng)∠APC為鈍角時,λ的取值范圍是________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)外接圓的圓心,,且,,,則  .

查看答案和解析>>

同步練習(xí)冊答案