1.已知AC,BD為圓x2+y2=16的兩條相互垂直的弦,垂足為M(1,2),則四邊形ABCD面積的最大值為
27.

分析 設(shè)圓心O到AC、BD的距離分別為d1、d2,由此表示出|AC|、|BD|,利用基本不等式求出四邊形ABCD面積的最大值.

解答 解:∵圓O:x2+y2=16,
∴圓心O坐標(biāo)(0,0),半徑r=4,
設(shè)圓心O到AC、BD的距離分別為d1、d2,
∵M(jìn)(1,2),
則d12+d22=OM2=12+22=5,
∴|AC|=2$\sqrt{16-{pd5j9xj_{1}}^{2}}$,|BD|=2$\sqrt{16-{dhdndzn_{2}}^{2}}$,
∴四邊形ABCD的面積為
S=$\frac{1}{2}$|AC|•|BD|=2$\sqrt{16-{fp9vp9d_{1}}^{2}}$•$\sqrt{16-{rdr9xn5_{2}}^{2}}$≤(16-d12)+(16-d22)=32-5=27,
當(dāng)且僅當(dāng)d12 =d22時(shí)取等號(hào),
∴四邊形ABCD面積的最大值為27.
故答案為:27.

點(diǎn)評(píng) 本題考查了直線與圓的應(yīng)用問題,也考查了對(duì)角線互相垂直的四邊形面積的求法以及基本不等式的應(yīng)用問題,是中檔題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.畫出函數(shù)y=|2x-2|的圖象,并利用圖象回答:
(1)函數(shù)y=|2x-2|的值域與單調(diào)增區(qū)間;
(2)k為何值時(shí),方程|2x-2|=k無(wú)解?有一解?有兩解?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知m,n為正數(shù)且有2m+n=1,則$\frac{1}{m}$+$\frac{2}{n}$的最小值為.( 。
A.1B.2C.4D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.己知函數(shù)f(x)=a(x-$\frac{1}{x}$)-2lnx,其中a∈R.
(1)若f(x)有極值,求a的取值范圍;
(2)若f(x)有三個(gè)不同的零點(diǎn)x1,x2,x3,求證:$①f(\frac{a^2}{4})<0;②{x_1}+{x_2}+{x_3}$>3
(參考數(shù)值:ln2≈0.6931)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

16.河大校辦工廠生產(chǎn)的產(chǎn)品A的直徑均位于區(qū)間[110,118]內(nèi)(單位:mm).若生產(chǎn)一件產(chǎn)品A的直徑位于區(qū)間[110,112),[112,114),[114,116),[116,118]內(nèi)該廠可獲利分別為10,20,30,10(單位:元),現(xiàn)從該廠生產(chǎn)的產(chǎn)品A中隨機(jī)抽取100件測(cè)量它們的直徑,得到如圖所示的頻率分布直方圖.
(1)求a的值,并估計(jì)該廠生產(chǎn)一件A產(chǎn)品的平均利潤(rùn);
(2)現(xiàn)用分層抽樣法從直徑位于區(qū)間[112,116)內(nèi)的產(chǎn)品中隨機(jī)抽取一個(gè)容量為5的樣本,再?gòu)臉颖局须S機(jī)抽取兩件產(chǎn)品進(jìn)行檢測(cè),求兩件產(chǎn)品中至少有一件產(chǎn)品的直徑位于區(qū)間[112,114)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.己知平面向量$\overrightarrow{a}$=(1,x),$\overrightarrow$=(2,y),且$\overrightarrow{a}$⊥$\overrightarrow$,則|$\overrightarrow{a}$+$\overrightarrow$|的最小值為( 。
A.1B.$\sqrt{5}$C.$\sqrt{7}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.解方程:($\frac{{x}^{2}}{x-1}$)2-$\frac{3{x}^{2}}{x-1}$-4=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.如圖,一次函數(shù)y=ax+b的圖象與反比例函數(shù)y=$\frac{k}{x}$的圖象交于A、B兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,已知OA=$\sqrt{10}$,點(diǎn)B的坐標(biāo)為(m,-2),tan∠AOC=$\frac{1}{3}$.
(1)求反比例函數(shù)、一次函數(shù)的解析式;
(2)求三角形ABO的面積;
(3)在y軸上存在一點(diǎn)P,使△PDC與△CDO相似,求P點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知U=R,集合A={x|x>1},集合B={x|-1<x<2},則圖中陰影部分表示的集合為(  )
A.{x|x>1}B.{x|x>-1}C.{x|-1<x<1}D.{x|-1<x≤1,或x≥2}

查看答案和解析>>

同步練習(xí)冊(cè)答案