【題目】已知如圖所示的程序框圖
(1)當(dāng)輸入的x為2,﹣1時,分別計算輸出的y值,并寫出輸出值y關(guān)于輸入值x的函數(shù)關(guān)系式;
(2)當(dāng)輸出的結(jié)果為4時,求輸入的x的值.
【答案】
(1)解:當(dāng)輸入的x為2時,y=log22=1,
當(dāng)輸入的x為﹣1時,y=( )﹣1=2.
輸出值y關(guān)于輸入值x的函數(shù)關(guān)系式為:y=
(2)解:當(dāng)x>0時,y=log2x=4,解得:x=16;
當(dāng)x≤0時,y=( )x=4,解得:x=﹣2.
綜上,當(dāng)輸出的結(jié)果為4時,求輸入的x的值為16或﹣2
【解析】(1)分析程序中各變量、各語句的作用,再根據(jù)圖示的順序,可知:該程序的作用是計算分段函數(shù)y= 的函數(shù)值,代入即可求值得解.(2)分段討論,利用函數(shù)解析式,分別求出相應(yīng)的x的值即可得解.
【考點精析】解答此題的關(guān)鍵在于理解程序框圖的相關(guān)知識,掌握程序框圖又稱流程圖,是一種用規(guī)定的圖形、指向線及文字說明來準(zhǔn)確、直觀地表示算法的圖形;一個程序框圖包括以下幾部分:表示相應(yīng)操作的程序框;帶箭頭的流程線;程序框外必要文字說明.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)f(x)是定義在R上的增函數(shù),且對于任意的x都有f(﹣x)+f(x)=0恒成立,如果實數(shù)a,b滿足不等式組 ,那么a2+b2的取值范圍是( )
A.[9,49]
B.(17,49]
C.[9,41]
D.(17,41]
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知p:函數(shù)f(x)=lg(ax2﹣x+ a)的定義域為R;q:a≥1.如果命題“p∨q為真,p∧q為假”,求實數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某早餐店每天制作甲、乙兩種口味的糕點共n(nN*)份,每份糕點的成本1元,售價2元,如果當(dāng)天賣不完,剩下的糕點作廢品處理.該早餐店發(fā)現(xiàn)這兩種糕點每天都有剩余,為此整理了過往100天這兩種糕點的日銷量(單位:份),得到如下的統(tǒng)計數(shù)據(jù):
甲口味糕點日銷量 | 48 | 49 | 50 | 51 |
天數(shù) | 20 | 40 | 20 | 20 |
乙口味糕點日銷量 | 48 | 49 | 50 | 51 |
天數(shù) | 40 | 30 | 20 | 10 |
以這100天記錄的各銷量的頻率作為各銷量的概率,假設(shè)這兩種糕點的日銷量相互獨立.
(1)記該店這兩種糕點每日的總銷量為X份,求X的分布列
(2)早餐店為了減少浪費,提升利潤,決定調(diào)整每天制作糕點的份數(shù)
①若產(chǎn)生浪費的概率不超過0.6,求n的最大值;
②以銷售這兩種糕點的日總利潤的期望值為決策依據(jù),在每天所制糕點能全部賣完與n=98之中選其一,應(yīng)選哪個?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=(x-3)ex+ax,aR
(1)當(dāng)a=1時,求曲線f(x)在點(2,f(2))處的切線方程;
(2)當(dāng)a[0,e)時,設(shè)函數(shù)f(x)在(1,+)上的最小值為g(a),求函數(shù)g(a)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓: 的兩個焦點與短軸的一個端點是直角三角形的三個頂點,直線: 與橢圓有且只有一個公共點.
(Ⅰ)求橢圓的方程及點的坐標(biāo);
(Ⅱ)設(shè)是坐標(biāo)原點,直線平行于,與橢圓交于不同的兩點、,且與直線交于點,證明:存在常數(shù),使得,并求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)向量 =(sin x,cos x), =(sin x, sin x),x∈R,函數(shù)f(x)= ,求:
(1)f(x)的最小正周期;
(2)f(x)在區(qū)間[0,1]上的最大值和最小值,以及取得最大值和最小值時x的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知橢圓的左頂點,且點在橢圓上, 、分別是橢圓的左、右焦點。過點作斜率為的直線交橢圓于另一點,直線交橢圓于點.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若為等腰三角形,求點的坐標(biāo);
(3)若,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=sinx﹣cosx+x+1,x∈[0,2π]
(1)求函數(shù)f(x)的單調(diào)遞減區(qū)間;
(2)求函數(shù)f(x)的極小值和最大值,并寫明取到極小值和最大值時分別對應(yīng)x的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com