【題目】在如圖所示的六面體中,面是邊長為2的正方形,面是直角梯形,,.
(1)求證:平面;
(2)若二面角為60°,求直線和平面所成角的正弦值.
【答案】(1)證明見解析;(2).
【解析】試題分析:(1)連接相交于點(diǎn),取的中點(diǎn)為,連接,易證四邊形是平行四邊形,從而可得結(jié)論;(2)以為坐標(biāo)原點(diǎn),為軸、為軸、為軸建立空間直角坐標(biāo)系.則,計(jì)算法向量,根據(jù)公式即可求出.
試題解析:
(1):連接相交于點(diǎn),取的中點(diǎn)為,連接.
是正方形,是的中點(diǎn),,
又因?yàn)?/span>,所以且,
所以四邊形是平行四邊形,
,又因?yàn)?/span>平面平面
平面
(2)是正方形,是直角梯形,,
,平面,同理可得平面.
又平面,所以平面平面,
又因?yàn)槎娼?/span>為60°,
所以,由余弦定理得,
所以,因?yàn)?/span>半面,
,所以平面,
以為坐標(biāo)原點(diǎn),為軸、為軸、為軸建立空間直角坐標(biāo)系.
則,
所以,
設(shè)平面的一個(gè)法向量為,
則即令,則,
所以
設(shè)直線和平面所成角為,
則
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓有以下性質(zhì):
①過圓上一點(diǎn)的圓的切線方程是.
②若不在坐標(biāo)軸上的點(diǎn)為圓外一點(diǎn),過作圓的兩條切線,切點(diǎn)分別為,則垂直,即.
(1)類比上述有關(guān)結(jié)論,猜想過橢圓上一點(diǎn)的切線方程 (不要求證明);
(2)若過橢圓外一點(diǎn)(不在坐標(biāo)軸上)作兩直線,與橢圓相切于兩點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】2019年是中華人民共和國成立70周年,某校黨支部舉辦了一場“我和我的祖國”知識(shí)競賽,滿分100分,回收40份答卷,成績均落在區(qū)間內(nèi),將成績繪制成如下的頻率分布直方圖.
(1)估計(jì)知識(shí)競賽成績的中位數(shù)和平均數(shù);
(2)從,分?jǐn)?shù)段中,按分層抽樣隨機(jī)抽取5份答卷,再從對(duì)應(yīng)的黨員中選出3位黨員參加縣級(jí)交流會(huì),求選出的3位黨員中有2位成績來自于分?jǐn)?shù)段的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)橢圓 的左右頂點(diǎn)分別為A,B,點(diǎn)P在橢圓上且異于A,B兩點(diǎn),O為坐標(biāo)原點(diǎn).
(1)若直線AP與BP的斜率之積為 ,求橢圓的離心率;
(2)若|AP|=|OA|,證明直線OP的斜率k滿足|k|> .
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】首屆中國國際進(jìn)口博覽會(huì)在2018年11月5日—10日在上海國家會(huì)展中心舉辦。會(huì)議期間,某公司欲采購東南亞某水果種植基地的水果,公司劉總經(jīng)理與該種植基地的負(fù)責(zé)人陳老板商定一次性采購一種水果的采購價(jià)(元/噸)與采購量(噸)之間的函數(shù)關(guān)系的圖象如圖中的折線所示(不包含端點(diǎn),但包含端點(diǎn)).
(Ⅰ)求與之間的函數(shù)關(guān)系式;
(Ⅱ)已知該水果種植基地種植該水果的成本是2800元/噸,那么劉總經(jīng)理的采購量為多少時(shí),該水果基地在這次買賣中所獲得利潤最大?最大利潤是多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某公司生產(chǎn)甲、乙兩種產(chǎn)品所得利潤分別為和(萬元),它們與投入資金(萬元)的關(guān)系有經(jīng)驗(yàn)公式,.今將120萬元資金投入生產(chǎn)甲、乙兩種產(chǎn)品,并要求對(duì)甲、乙兩種產(chǎn)品的投資金額都不低于20萬元.
(Ⅰ)設(shè)對(duì)乙產(chǎn)品投入資金萬元,求總利潤(萬元)關(guān)于的函數(shù)關(guān)系式及其定義域;
(Ⅱ)如何分配使用資金,才能使所得總利潤最大?最大利潤為多少?
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在梯形中, , , ,四邊形為矩形,平面平面, .
(Ⅰ)求證: 平面;
(Ⅱ)點(diǎn)在線段上運(yùn)動(dòng),設(shè)平面與平面所成銳二面角為,試求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)=[].
(Ⅰ)若曲線y= f(x)在點(diǎn)(1,)處的切線與軸平行,求a;
(Ⅱ)若在x=2處取得極小值,求a的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com