【題目】如圖,已知多面體是正方體,分別是棱,的中點,點是棱上的動點,過點,,的平面與棱交于點,則以下說法不正確的是( )

A.四邊形是平行四邊形

B.四邊形是菱形

C.當點從點往點運動時,四邊形的面積先增大后減小

D.當點從點往點運動時,三棱錐的體積一直增大

【答案】C

【解析】

對選項逐一判斷,可得答案.項,由面面平行的性質(zhì)定理可得,故四邊形是平行四邊形.項,由是正方體,易知平面,故平面,故,故平行四邊形是菱形.項,菱形的面積,線段的長度是定值,菱形的面積先減小后增大.項,由,點到平面的距離不變,當點從點往點運動時,三角形的面積一直增大,故三棱錐的體積一直增大.

如圖所示

平面平面,平面平面

平面平面,同理,

四邊形是平行四邊形,故正確.

是正方體,,又平面,

平面.

分別是棱的中點,,平面,

平面,,平行四邊形是菱形,故正確.

菱形的面積,線段的長度是定值.當點從點往點運動時,線段的長度先減小后增大,菱形的面積先減小后增大,故不正確.

,點到平面的距離不變.當點從點往點運動時,三角形的面積一直增大,三棱錐的體積一直增大,故正確.

故選:.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)的圖象如圖所示,給出四個函數(shù):①,②,③,④,又給出四個函數(shù)的圖象,則正確的匹配方案是( ).

A.①-甲,②-乙,③-丙,④-丁B.②-甲,①-乙,③-丙,④-丙

C.①-甲,③-乙,④-丙,②-丁D.①-甲,④-乙,③-丙,②-丁

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)f(x)=|lnx|,g(x)=,則方程|f(x)+g(x)|=1實根的個數(shù)為________

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐EABCD的側(cè)棱DE與四棱錐FABCD的側(cè)棱BF都與底面ABCD垂直,,//,.

1)證明://平面BCE.

2)設平面ABF與平面CDF所成的二面角為θ,求.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),方程3個不同的解,現(xiàn)給出下述結(jié)論:①;②;③的極小值.則其中正確的結(jié)論的有(

A.①③B.①②③C.②③D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】求直線關于對稱的直線方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為為參數(shù)),直線,以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系.

1)求直線l和曲線C的極坐標方程;

2)若直線與直線l相交于點A,與曲線C相交于不同的兩點M,N.的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在如圖所示的幾何體中,四邊形是菱形,,的中點,平面,.

(1)求證:平面平面;

(2)若,,且,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在貫徹中共中央國務院關于精準扶貧政策的過程中,某單位定點幫扶甲、乙兩個村各50戶貧困戶.為了做到精準幫扶,工作組對這100戶村民的年收入情況、勞動能力情況、子女受教育情況、危舊房情況、患病情況等進行調(diào)查,并把調(diào)查結(jié)果轉(zhuǎn)化為各戶的貧困指標制成下圖,其中”表示甲村貧困戶,“”表示乙村貧困戶.

,則認定該戶為“絕對貧困戶”,若,則認定該戶為“相對貧困戶”,若,則認定該戶為“低收入戶”;

,則認定該戶為“今年能脫貧戶”,否則為“今年不能脫貧戶”.

1)從甲村50戶中隨機選出一戶,求該戶為“今年不能脫貧的絕對貧困戶的概率;

2)若從所有“今年不能脫貧的非絕對貧困戶”中選3戶,用表示所選3戶中乙村的戶數(shù),求的分布列和數(shù)學期望

3)試比較這100戶中,甲、乙兩村指標的方差的大。ㄖ恍鑼懗鼋Y(jié)論).

查看答案和解析>>

同步練習冊答案