橢圓一焦點(diǎn)坐標(biāo)是(06),中心在原點(diǎn),兩條準(zhǔn)線間的距離為20,則該橢圓的方程是

[  ]

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過(guò)點(diǎn)(-2,-
2
)的橢圓的標(biāo)準(zhǔn)方程.
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1(a>b>0).設(shè)斜率為k的直線l交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過(guò)原點(diǎn)的定直線上.
(3)利用(2)所揭示的橢圓幾何性質(zhì),用作圖方法找出下面給定橢圓的中心,簡(jiǎn)要寫出作圖步驟,并在圖中標(biāo)出橢圓的中心.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(1)求右焦點(diǎn)坐標(biāo)是(2,0),且經(jīng)過(guò)點(diǎn)( -2 , -
2
 )
的橢圓的標(biāo)準(zhǔn)方程;
(2)已知橢圓C的方程是
x2
a2
+
y2
b2
=1
(a>b>0).設(shè)斜率為k的直線l,交橢圓C于A、B兩點(diǎn),AB的中點(diǎn)為M.證明:當(dāng)直線l平行移動(dòng)時(shí),動(dòng)點(diǎn)M在一條過(guò)原點(diǎn)的定直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以下四個(gè)關(guān)于圓錐曲線的命題中:
①設(shè)A、B為兩個(gè)定點(diǎn),k為非零常數(shù),若||PA|-|PB||=k,則動(dòng)點(diǎn)P的軌跡為雙曲線;
②過(guò)定圓C上一定點(diǎn)A作圓的動(dòng)弦AB,O為坐標(biāo)原點(diǎn),若
OP
=
1
2
OA
+
1
2
OB
,則動(dòng)點(diǎn)P的軌跡為橢圓;
③拋物線x=ay2(a≠0)的焦點(diǎn)坐標(biāo)是(
1
4a
,0)

④曲線
x2
16
-
y2
9
=1
與曲線
x2
35-λ
+
y2
10-λ
=1
(λ<35且λ≠10)有相同的焦點(diǎn).
其中真命題的序號(hào)為
 
寫出所有真命題的序號(hào).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2012•煙臺(tái)一模)直線l與橢圓
y2
a2
+
x2
b2
=1(a>b>0)
交于A(x1,y1),B(x2,y2)兩點(diǎn),已知
m
=(ax1,by1),
n
=(ax2,by2),若
m
n
且橢圓的離心率e=
3
2
,又橢圓經(jīng)過(guò)點(diǎn)(
3
2
,1)
,O為坐標(biāo)原點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)若直線l過(guò)橢圓的焦點(diǎn)F(0,c)(c為半焦距),求直線l的斜率k的值;
(Ⅲ)試問(wèn):△AOB的面積是否為定值?如果是,請(qǐng)給予證明;如果不是,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案