給出下列命題:①存在實數(shù)α,使sinα•cosα=1,②函數(shù)y=sin(
3
2
π+x)
是偶函數(shù),③x=
π
8
是函數(shù)y=sin(2x+
5
4
π)
的一條對稱軸方程,④若α、β是第一象限的角,且α>β,則sinα>sinβ,⑤點(
π
6
,0)
是函數(shù)y=tan(x+
π
3
)
圖象的對稱中心,⑥若f(sinx)=cos6x,則f(cos15°)=0.其中正確命題的序號是
 
.(把所有正確的序號都填上)
分析:本題分別用三角函數(shù)的范圍和奇偶性,三角函數(shù)的圖象和誘導(dǎo)公式進行逐項判斷.
解答:解:①、由sinα∈[-1,1]且cosα∈[-1,1]知,當(dāng)sinα=±1時,cosα=0;當(dāng)cosα=±1時,sinα=0,故①不對;
②、因y=sin(
3
2
π+x)
=-cosx,所以此函數(shù)是偶函數(shù),故②對;
③、把x=
π
8
代入y=sin(2x+
5
4
π)
,解得y=-1,故③對;
④、如α=2π+
π
6
,β=
π
3
時,有sinα<sinβ,故④不對;
⑤、當(dāng)x=
π
6
時,x+
π
3
=
π
2
不符合題意,故⑤不對;
⑥、∵cos15°=sin75°,∴f(sinx)=cos(6×750)=cos900=0,故⑥對.
故答案為:②③⑥.
點評:本題考查了三角函數(shù)的定義、圖象和性質(zhì)以及誘導(dǎo)公式等等有關(guān)知識,考查的知識多、范圍廣,但是難度不大是對基礎(chǔ)概念的理解和應(yīng)用.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:①存在實數(shù)x,使得sinx+cosx=
π
3
;②函數(shù)y=sinx的圖象向右平移
π
4
個單位,得到y=sin(2x+
π
4
)
的圖象;③函數(shù)y=sin(
2
3
x-
7
2
π)
是偶函數(shù);④已知α,β是銳角三角形ABC的兩個內(nèi)角,則sinα>cosβ.其中正確的命題的個數(shù)為( 。
A、1個B、2個C、3個D、4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)α,使sinα•cosα=1
②函數(shù)y=sin(
3
2
π+x)
是偶函數(shù)
x=
π
8
是函數(shù)y=sin(2x+
5
4
π)
的一條對稱軸方程
④若α、β是第一象限的角,且α>β,則sinα>sinβ
其中正確命題的序號是
②③
②③

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)x,使得sinx+cosx=
π
3

②函數(shù)y=sin2x的圖象向右平移
π
4
個單位,得到y=sin(2x+
π
4
)
的圖象;
③函數(shù)y=sin(
2
3
x-
7
2
π)
是偶函數(shù);
④已知α,β是銳角三角形ABC的兩個內(nèi)角,則sinα>cosβ.
其中正確的命題的個數(shù)為
3
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)a,使sinacosa=1;
②y=cosx的單調(diào)遞增區(qū)間是[2kπ,(2k+1)π],(k∈Z);
③y=sin(
2
-2x)是偶函數(shù);
④若α,β是第一象限角,且α>β,則tanα>tanβ.
⑤函數(shù)f(x)=4sin(2x+
π
3
)的表達式可以改寫成f(x)=4cos(2x-
π
6

⑥函數(shù)y=sinx的圖象的對稱軸方程為x=kπ+
π
2
,(k∈Z)

其中正確命題的序號是
③⑤⑥
③⑤⑥
.(注:把你認為正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

給出下列命題:
①存在實數(shù)α使sinα•cosα=1成立;
②存在實數(shù)α使sinα+cosα=
3
2
成立;
③函數(shù)y=sin(
2
-2x)
是偶函數(shù);
x=
π
8
是函數(shù)y=sin(2x+
4
)
的圖象的一條對稱軸的方程;
⑤在△ABC中,若A>B,則sinA>sinB.
其中正確命題的序號是( 。

查看答案和解析>>

同步練習(xí)冊答案