在△ABC中,一定成立的等式是( 。
A、asinB=bsinA
B、acosB=bcosA
C、atanB=btanA
D、asinA=bsinB
考點(diǎn):正弦定理,兩角和與差的正弦函數(shù)
專題:解三角形
分析:直接利用正弦定理判斷即可.
解答: 解:在△ABC中,asinB=bsinA,可得:sinAsinB=sinBsinA,顯然A的表達(dá)式一定成立.
故選:A.
點(diǎn)評:本題考查正弦定理的應(yīng)用,三角形的求解,考查計(jì)算能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-16<0},B={x|x2-4x+3>0},C={x|2x-m>2}.
(Ⅰ)求A∩B;
(Ⅱ)若A⊆C,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a5=( 。
A、13B、14C、15D、16

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a,b,c∈R,a2+(b+1)2+c2=3,則a+b+c的最小值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

冪函數(shù)y=xm2+m+1(m∈Z)的定義域是
 
,奇偶性是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1的左右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P(1,
3
2
)在橢圓C上,過點(diǎn)P的直線與圓x2+y2=1相切于點(diǎn)F2.求橢圓C的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(6,1)B(1,3)C(3,1),求向量
AB
在向量
BC
上的投影.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圖1是某高三學(xué)生進(jìn)入高中三年來的數(shù)學(xué)考試成績莖葉圖,第1次到12次的考試成績依次記為A1,A2,…,A12.圖2是統(tǒng)計(jì)莖葉圖中成績在一定范圍內(nèi)考試次數(shù)的一個算法流程圖.那么算法流程圖輸出的結(jié)果是( 。
A、8B、9C、10D、11

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中∠C=90°,AC=8,BC=6,以這個直角三角形的一條邊所在的直線為軸旋轉(zhuǎn)一周,求所得到的幾何體的表面積.

查看答案和解析>>

同步練習(xí)冊答案