(本題分12分)
如圖,斜率為1的直線過拋物線的焦點(diǎn),與拋物線交于兩點(diǎn)A、B, 將直線按向量平移得到直線,為上的動(dòng)點(diǎn),為拋物線弧上的動(dòng)點(diǎn).
(Ⅰ) 若 ,求拋物線方程.
(Ⅱ)求的最大值.
(Ⅲ)求的最小值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
(本小題滿分14分)
已知直線上有一個(gè)動(dòng)點(diǎn),過點(diǎn)作直線垂直于軸,動(dòng)點(diǎn)在上,且滿足
(為坐標(biāo)原點(diǎn)),記點(diǎn)的軌跡為.
(1)求曲線的方程;
(2)若直線是曲線的一條切線, 當(dāng)點(diǎn)到直線的距離最短時(shí),求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
(10分)拋物線上有兩點(diǎn)且(0為坐標(biāo)原點(diǎn))
(1)求證:∥ (2)若,求AB所在直線方程。
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知雙曲線C:2x2-y2=2與點(diǎn)P(1,2).求過點(diǎn)P(1,2)的直線l的斜率k的取值范圍,使l與C只有一個(gè)交點(diǎn);
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知P為曲線C上任一點(diǎn),若P到點(diǎn)F的距離與P到直線距離相等
(1)求曲線C的方程;
(2)若過點(diǎn)(1,0)的直線l與曲線C交于不同兩點(diǎn)A、B,
(I)若,求直線l的方程;
(II)試問在x軸上是否存在定點(diǎn)E(a,0),使恒為定值?若存在,求出E的坐標(biāo)及定值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓的左、右焦點(diǎn)分別為,上頂點(diǎn)為,離心率為,在軸負(fù)半軸上有一點(diǎn),且
(Ⅰ)若過三點(diǎn)的圓恰好與直線相切,求橢圓C的方程;
(Ⅱ)在(Ⅰ)的條件下,過右焦點(diǎn)作斜率為的直線與橢圓C交于兩點(diǎn),在軸上是否存在點(diǎn),使得以為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍;否則,請(qǐng)說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的長(zhǎng)軸長(zhǎng)是短軸長(zhǎng)的兩倍,且過點(diǎn)
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線與橢圓交于不同的兩點(diǎn),求的值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com