1.已知$\overrightarrow a=(-1,1),\overrightarrow{OA}=\overrightarrow a-\overrightarrow b,\overrightarrow{OB}$=$\overrightarrow a+\overrightarrow b$,若△OAB是以O(shè)為直角頂點(diǎn)的等腰直角三角形,則△OAB的面積是2.

分析 根據(jù)△OAB是以O(shè)為直角頂點(diǎn)的等腰直角三角形,得到向量垂直和向量模長(zhǎng)相等的條件,利用向量數(shù)量積的定義進(jìn)行求解即可.

解答 解:若△OAB是以O(shè)為直角頂點(diǎn)的等腰直角三角形,
則$\overrightarrow{OA}$⊥$\overrightarrow{OB}$,即$\overrightarrow{OA}$•$\overrightarrow{OB}$=0,
則($\overrightarrow{a}$-$\overrightarrow$)•($\overrightarrow{a}$+$\overrightarrow$)=0,
即|$\overrightarrow{a}$|2-|$\overrightarrow$|2=0,
則|$\overrightarrow{a}$|=|$\overrightarrow$|=$\sqrt{2}$,
又|$\overrightarrow{OA}$|=|$\overrightarrow{OB}$|,
即|$\overrightarrow{a}$-$\overrightarrow$|=|$\overrightarrow{a}$+$\overrightarrow$|,
平方得|$\overrightarrow{a}$|2+|$\overrightarrow$|2-2$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|2+|$\overrightarrow$|2+2$\overrightarrow{a}$•$\overrightarrow$,
得$\overrightarrow{a}$•$\overrightarrow$=0,
則|$\overrightarrow{OA}$|2=|$\overrightarrow{a}$|2+|$\overrightarrow$|2-2$\overrightarrow{a}$•$\overrightarrow$=|$\overrightarrow{a}$|2+|$\overrightarrow$|2=2+2=4,
則|$\overrightarrow{OA}$|=2,
則△OAB的面積S=$\frac{1}{2}$|$\overrightarrow{OA}$|•|$\overrightarrow{OB}$|=$\frac{1}{2}×2×2$=2.
故答案為:2

點(diǎn)評(píng) 本題主要考查向量數(shù)量積的應(yīng)用,根據(jù)等腰直角三角形的性質(zhì),結(jié)合向量垂直和向量相等的關(guān)系進(jìn)行轉(zhuǎn)化求解是解決本題的關(guān)鍵.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=x2+ax+1,g(x)=ex(其中e為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)若a=1,求函數(shù)y=f(x)•g(x)在區(qū)間[-2,0]上的最大值;
(Ⅱ)若a=-1,關(guān)于x的方程f(x)=k•g(x)有且僅有一個(gè)根,求實(shí)數(shù)k的取值范圍;
(Ⅲ)若對(duì)任意的x1,x2∈[0,2],x1≠x2,不等式|f(x1)-f(x2)|<|g(x1)-g(x2)|均成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知集合A={y|y=x2-1},B={x|y=$\sqrt{1-{x}^{2}}$},C={y|y=$\sqrt{1-{x}^{2}}$},則集合A、B、C的關(guān)系為C⊆B⊆A.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知集合A={x|-3<x<3},B={x|y=lg(x+1)},則集合A∩B為( 。
A.[0,3)B.[-1,3)C.(-1,3)D.(-3,-1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的一條漸近線經(jīng)過(guò)點(diǎn)(1,2),則該漸近線與圓(x+1)2+(y-2)2=4相交所得的弦長(zhǎng)為$\frac{{4\sqrt{5}}}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在平面直角坐標(biāo)系xOy中,已知中心在原點(diǎn),焦點(diǎn)在x軸上的雙曲線C的離心率為$\sqrt{2}$,且雙曲線C與斜率為2的直線l有一個(gè)公共點(diǎn)P(-2,0).
(1)求雙曲線C的方程及它的漸近線方程;
(2)求以直線l與坐標(biāo)軸的交點(diǎn)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.點(diǎn)O是平行四邊形ABCD的中點(diǎn),E,F(xiàn)分別在邊CD,AB上,且$\frac{CE}{ED}$=$\frac{AF}{FB}$=$\frac{1}{2}$.求證:點(diǎn)E,O,F(xiàn)在同一直線上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.在半徑為2的球面中,有一個(gè)底面是等邊三角形,側(cè)棱與底面垂直的三棱柱的頂點(diǎn)都在這個(gè)球面上,則該三棱柱的側(cè)面積的最大值為12$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.若函數(shù)f(x)=x3-3x在(a,6-a2)上有最大值,則實(shí)數(shù)a的取值范圍是(  )
A.(-$\sqrt{7}$,-1)B.(-$\sqrt{7}$,-1]C.(-$\sqrt{7}$,-2)D.(-$\sqrt{7}$,-2]

查看答案和解析>>

同步練習(xí)冊(cè)答案