【題目】如圖,在四棱錐中, 平面,且, , 是邊的中點(diǎn).

(1)求證: 平面;

(2)若是線段上的動點(diǎn)(不含端點(diǎn)):問當(dāng)為何值時,二面角余弦值為

【答案】1見解析2

【解析】試題分析:(1平面,再根據(jù),可推出平面,再由是邊的中點(diǎn),可推出,從而可證平面;(2)在底面內(nèi)過點(diǎn)作直線, , 所在直線分別為, , 軸,建立空間直角坐標(biāo)系,由(1) 可得是平面的一個法向量,再求出平面的一個法向量,再根據(jù)二面角余弦值為,即可求得.

試題解析:(1)證明:∵平面

,

,

平面

,

在等腰直角中,∵是邊的中點(diǎn)

,

平面

2)解:在底面內(nèi)過點(diǎn)作直線, ,平面,

, 所在直線分別為, , 軸,建立空間直角坐標(biāo)系,

, , , ,

,

平面

是平面的一個法向量,

是線段上的動點(diǎn),設(shè)),

,,

設(shè)是平面的一個法向量,

, ,

設(shè)二面角大小為

,此時二面角是鈍二面角,符合題意,此時

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列命題中為真命題的是( )

A.,則的否命題B.,則的逆命題.

C.,則的否命題D.,則的逆否命題

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐中, , ,若該三棱錐的四個頂點(diǎn)均在同一球面上,則該球的體積為( )

A. B. C. D.

【答案】D

【解析】在三棱錐中,因?yàn)?/span>, , ,所以,則該幾何體的外接球即為以為棱長的長方體的外接球,則 ,其體積為 ;故選D.

點(diǎn)睛:在處理幾何體的外接球問題,往往將所給幾何體與正方體或長方體進(jìn)行聯(lián)系,常用補(bǔ)體法補(bǔ)成正方體或長方體進(jìn)行處理,本題中由數(shù)量關(guān)系可證得 從而幾何體的外接球即為以為棱長的長方體的外接球,也是處理本題的技巧所在.

型】單選題
結(jié)束】
21

【題目】已知函數(shù),則的大致圖象為(

A. B.

C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】一次數(shù)學(xué)知識競賽中,兩組學(xué)生成績?nèi)缦卤恚?/span>

分?jǐn)?shù)

50

60

70

80

90

100

人數(shù)

甲組

2

5

10

13

14

6

乙組

4

4

16

2

12

12

已經(jīng)算得兩個組的平均分都是80分,請根據(jù)你所學(xué)過的統(tǒng)計(jì)知識,進(jìn)一步判斷這兩個組這次競賽中成績誰優(yōu)誰次,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】20051215,中央密蘇里州立大學(xué)的教授 Curtis Cooper Steven Boone發(fā)現(xiàn)了第43個麥森質(zhì)數(shù).這個質(zhì)數(shù)是______位數(shù);它的末兩位數(shù)是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】運(yùn)動會時,高一某班共有28名同學(xué)參加比賽,每人至多報(bào)兩個項(xiàng)目.15人參加游泳,8人參加田徑,14人參加球類.同時參加游泳和田徑的有3人,同時參加游泳和球類的有3人,則只參加一個項(xiàng)目的有______人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知橢圓經(jīng)過不同的三點(diǎn)在第三象限),線段的中點(diǎn)在直線上.

(Ⅰ)求橢圓的方程及點(diǎn)的坐標(biāo);

(Ⅱ)設(shè)點(diǎn)是橢圓上的動點(diǎn)(異于點(diǎn)且直線分別交直線兩點(diǎn),問是否為定值?若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某電視臺問政直播節(jié)目首場內(nèi)容是“讓交通更順暢”.A、B、C、D四個管理部門的負(fù)責(zé)人接受問政,分別負(fù)責(zé)問政A、B、C、D四個管理部門的現(xiàn)場市民代表(每一名代表只參加一個部門的問政)人數(shù)的條形圖如下.為了了解市民對武漢市實(shí)施“讓交通更順暢”幾個月來的評價(jià),對每位現(xiàn)場市民都進(jìn)行了問卷調(diào)查,然后用分層抽樣的方法從調(diào)查問卷中抽取20份進(jìn)行統(tǒng)計(jì),統(tǒng)計(jì)結(jié)果如下面表格所示:

滿意

一般

不滿意

A部門

50%

25%

25%

B部門

80%

0

20%

C部門

50%

50%

0

D部門

40%

20%

40%

(1)若市民甲選擇的是A部門,求甲的調(diào)查問卷被選中的概率;

(2)若想從調(diào)查問卷被選中且填寫不滿意的市民中再選出2人進(jìn)行電視訪談,求這兩人中至少有一人選擇的是D部門的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,多面體 是正方形, 是梯形, , 平面 分別為棱的中點(diǎn)

求證:平面平面;

求平面和平面所成銳二面角的余弦值

查看答案和解析>>

同步練習(xí)冊答案