已知命題p:方程
x2
2m
-
y2
m-1
=1
表示焦點在y軸上的橢圓;命題q:?x0∈R,使x02+x0+m<0;若“p∨q”為真,“p∧q”為假,求實數(shù)m的取值范圍.
分析:本題考查的知識點是復合命題的真假判定,解決的辦法是先判斷組成復合命題的簡單命題的真假,再根據(jù)真值表進行判斷.
解答:解:∵命題p:方程
x2
2m
-
y2
m-1
=1
表示焦點在y軸上的橢圓
∴當命題p為真時,可得實數(shù)m的取值范∴
2m>0
m-1<0
2m<1-m

∴解得,0<m<
1
3

又∵命題q:?x0∈R,使x02+x0+m<0;
∴當命題q為真時,可得實數(shù)m的取值范圍::△=1-4m>0,
∴解得,m<
1
4

∵“p∨q”為真,“p∧q”為假
∴①p真q假,那么m的取值范圍:
0<m<
1
3
m≥
1
4

解得,
1
4
≤m<
1
3

②p假q真時,那么m的取值范圍:
m≤0或m≥
1
3
m<
1
4

解得,m≤0
綜上實數(shù)m的取值范圍為(-∞,0]∪[
1
4
,
1
3
)
點評:本題考查的知識點是復合命題的真假判定,屬于基礎題目
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的負實根;q:方程mx2+(m-1)x+m=0無實根.若“p或q”為真,p且q”為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:方程x2+mx+1=0有兩個不相等的負實數(shù)根;命題Q:函數(shù)f(x)=lg[4x2+(m-2)x+1]的定義域為實數(shù)集R,若P或Q為真,P且Q為假,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:“方程x2+
y2m
=1表示焦點在y軸上的橢圓”;命題Q:“方程2x2-4x+m=0沒有實數(shù)根”.若P∧Q假,P∨Q為真,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題P:方程x2-2mx+m=0沒有實數(shù)根;
命題Q:?x∈R,x2+mx+1≥0.
(1)寫出命題Q的否定“¬Q”;
(2)如果“P∨Q”為真命題,“P∧Q”為假命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知命題p:方程x2+mx+1=0有兩個不等的正實數(shù)根,命題q:方程4x2+4(m+2)x+1=0無實數(shù)根.
(1)若p為真命題,求m的取值范圍;
(2)若q為真命題,求m的取值范圍;
(3)若“p或q”為真命題,求m的取值范圍.

查看答案和解析>>

同步練習冊答案