【題目】在平面直角坐標(biāo)系xOy中,直線l的參數(shù)方程為 t為參數(shù)),若以O為極點,x軸的正半軸為極軸且取相同的單位長度建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為.

1)求曲線C的直角坐標(biāo)方程及直線l的普通方程;

2)將所得曲線C向右平移1個單位長度,再將曲線C上的所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得到曲線,求曲線上的點到直線l的距離的最大值.

【答案】1;(2

【解析】

1)根據(jù)參數(shù)方程與普通方程互化法則,消參即可得到普通方程,根據(jù)即可將極坐標(biāo)方程化為直角坐標(biāo)方程;

2)根據(jù)平移法則得出的方程,將問題轉(zhuǎn)化為求圓上的點到直線距離的最大值.

1)由,即

故直線l的普通方程為;

代入,即.

故曲線C的直角坐標(biāo)方程為

2)將所得曲線C向右平移1個單位長度,得

再將曲線C上的所有點的橫坐標(biāo)變?yōu)樵瓉淼?/span>2倍,得.

因為曲線的圓心為,半徑為

且圓心到直線的距離為

所以曲線上的點到直線l的距離的最大值為

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】“中國剩余定理”又稱“孫子定理”,最早可見于中國南北朝時期的數(shù)學(xué)著作《孫子算經(jīng)》卷下第二十六題,叫做“物不知數(shù)”,原文如下:今有物不知其數(shù),三三數(shù)之剩二,五五數(shù)之剩三,七七數(shù)之剩二.問物幾何?現(xiàn)有這樣一個相關(guān)的問題:將120202020個自然數(shù)中被5除余3且被7除余2的數(shù)按照從小到大的順序排成一列,構(gòu)成一個數(shù)列,則該數(shù)列各項之和為(

A.56383B.57171C.59189D.61242

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)中心在原點,焦點在軸上的橢圓過點,且離心率為的右焦點,上一點,軸,的半徑為

1)求的方程;

2)若直線交于兩點,與交于兩點,其中在第一象限,是否存在使?若存在,求的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,以軸為始邊做兩個銳角,它們的終邊分別與單位圓相交于A,B兩點,已知A,B的橫坐標(biāo)分別為

1)求的值; 2)求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),(其中)的圖象的兩條相鄰對稱軸之間的距離為,且圖象上一個最低點為.

(1)求函數(shù)的解析式;

(2)當(dāng)時,求函數(shù)的值域;

(3)若方程上有兩個不相等的實數(shù)根,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的長軸長為4,且經(jīng)過點.

1)求橢圓的方程;

2)直線的斜率為,且與橢圓相交于兩點(異于點),過的角平分線交橢圓于另一點.

i)證明:直線與坐標(biāo)軸平行;

ii)當(dāng)時,求四邊形的面積

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)為自然對數(shù)的底數(shù)),其中

(Ⅰ)若,求的單調(diào)區(qū)間;

(Ⅱ)求零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,某人承包了一塊矩形土地用來種植草莓,其中mm.現(xiàn)規(guī)劃建造如圖所示的半圓柱型塑料薄膜大棚個,每個半圓柱型大棚的兩半圓形底面與側(cè)面都需蒙上塑料薄膜(接頭處忽略不計),塑料薄膜的價格為每平方米元;另外,還需在每個大棚之間留下m寬的空地用于建造排水溝與行走小路(如圖中m),這部分建設(shè)造價為每平方米.

1)當(dāng)時,求蒙一個大棚所需塑料薄膜的面積;(本小題結(jié)果保留

2)試確定大棚的個數(shù),使得上述兩項費用的和最低?(本小題計算中

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于三次函數(shù),給出定義:設(shè)是函數(shù)的導(dǎo)數(shù),的導(dǎo)數(shù),若方程有實數(shù)解,則稱點為函數(shù)拐點”.經(jīng)過探究發(fā)現(xiàn):任何一個三次函數(shù)都有拐點;任何一個三次函數(shù)都有對稱中心,且拐點就是對稱中心.設(shè)函數(shù).

1)當(dāng)時,求的值;

2)若不等式恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案