分析 (1)證明AC⊥面PBD,即可證明平面PBD⊥平面PAC;
(2)求出面PAC的法向量,利用向量的方法求AB與平面PAC所成角的正弦值.
解答 (1)證明:∵BD⊥AC,PD⊥AC,BD∩PD=D,
∴AC⊥面PBD,
又AC?面PAC,所以 面PAC⊥面PBD,
即平面平面PBD⊥平面PAC;
(2)解:如圖建立空間直角坐標系,則D(0,0,0),
令A(yù)(1,0,0),則B(0,$\sqrt{3}$,0),C(-1,0,0),
又∠PDB為二面角P-AC-B的平面角,得∠PDB=60°,
設(shè)DP=λ,則P(0,$\frac{λ}{2}$,$\frac{\sqrt{3}}{2}$λ),
設(shè)$\overrightarrow{n}$=(x,y,z)為面PAC的法向量,則$\overrightarrow{AC}$=(-2,0,0),$\overrightarrow{AP}$=(-1,$\frac{λ}{2}$,$\frac{\sqrt{3}}{2}$λ),
得$\left\{\begin{array}{l}{-2x=0}\\{-x+\frac{λ}{2}y+\frac{\sqrt{3}}{2}λz=0}\end{array}\right.$取y=$\sqrt{3}$,得$\overrightarrow{n}$=(0,$\sqrt{3}$,-1),
又$\overrightarrow{AB}$=(-1,$\sqrt{3}$,0)得 cos<$\overrightarrow{n}$,$\overrightarrow{AB}$>=$\frac{3}{4}$,
∴AB與平面PAC所成角的正弦值為$\frac{3}{4}$.
點評 本題主要考查面面垂直的判定以及二面角的求解,綜合考查了空間垂直的判定定理的應(yīng)用.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -$\sqrt{3}$ | B. | -$\frac{\sqrt{3}}{3}$ | C. | $\sqrt{3}$ | D. | $\frac{\sqrt{3}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com