一個(gè)圓切直線l1:x-6y-10=0于點(diǎn)P(4,-1),且圓心在直線L2:5x-3y=0上,則圓的方程為_(kāi)_____.
∵過(guò)(4,-1)且與切線l1:x-6y-10=0垂直的直線方程為6x+y-23=0且過(guò)圓心,
又∵圓心在直線L2:5x-3y=0上
∴圓心為兩直線的交點(diǎn),即(3,5).∴r2=(3-4)2+(5+1)2=37
∴圓方程為:(x-3)2+(y-5)2=37
故答案為:(x-3)2+(y-5)2=37
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

7、一個(gè)圓切直線l1:x-6y-10=0于點(diǎn)P(4,-1),且圓心在直線L2:5x-3y=0上,則圓的方程為
(x-3)2+(y-5)2=37

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)圓切直線l1:x-6y-10=0于點(diǎn)P(4,-1),且圓心在直線l2:5x-3y=0上,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

一個(gè)圓切直線l1:x-6y-10=0于點(diǎn)P(4,-1),且圓心在直線l2:5x-3y=0上,求該圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)圓切直線l1:x-6y-10=0于點(diǎn)P(4,-1),且圓心在直線l2:5x-3y=0上,求該圓的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案