【題目】在直角坐標(biāo)系xOy中,圓C的參數(shù)方程(φ為參數(shù)).以O(shè)為極點,x軸的非負半軸為極軸建立極坐標(biāo)系.

(Ⅰ)求圓C的極坐標(biāo)方程;

(Ⅱ)直線l的極坐標(biāo)方程是ρ(sinθ+)=3,射線OM:θ=與圓C的交點為O,P,與直線l的交點為Q,求線段PQ的長.

【答案】;()線段的長為2

【解析】

試題分析:()求圓的極坐標(biāo)方程,首先得知道圓的普通方程,由圓的參數(shù)方程為參數(shù)),可得圓的普通方程是,由公式,,可得圓的極坐標(biāo)方程,值得注意的是,參數(shù)方程化極坐標(biāo)方程,必須轉(zhuǎn)化為普通方程;()求線段的長,此問題處理方法有兩種,一轉(zhuǎn)化為普通方程,利用普通方程求出兩點的坐標(biāo),有兩點距離公式可求得線段的長,二利用極坐標(biāo)方程求出兩點的極坐標(biāo),由于,所以,所以線段的長為2

試題解析:(Ⅰ)的普通方程是,又;所以圓的極坐標(biāo)方程是.

(Ⅱ)設(shè)為點的極坐標(biāo),則有解得,設(shè)為點的極坐標(biāo),則有解得,由于,所以,所以線段的長為2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),其圖象在點處切線的斜率為-3.

(1)求關(guān)系式;

(2)求函數(shù)的單調(diào)區(qū)間(用只含有的式子表示);

(3)當(dāng)時,令,設(shè)是函數(shù)的兩個零點, 的等差中項,求證: 為函數(shù)的導(dǎo)函數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】不是直角三角形,它的三個角所對的邊分別為,已知.

1求證:

2如果,面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某校從參加高三模擬考試的學(xué)生中隨機抽取60名學(xué)生,將其數(shù)學(xué)成績(均為整數(shù))分成六段[90,100),[100,110),…,[140,150)后得到如下部分頻率分布直方圖.觀察圖形的信息,回答下列問題:

求分數(shù)在[120,130)內(nèi)的頻率,并補全這個頻

率分布直方圖;

統(tǒng)計方法中,同一組數(shù)據(jù)常用該組區(qū)間的中點

值作為代表,據(jù)此估計本次考試的平均分;

(3)用分層抽樣的方法在分數(shù)段為[110,130)的學(xué)生中抽取一個容量為6的樣本,將該樣本看成一個總體,從中任取2個,求至多有1人在分數(shù)段[120,130)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)fx)=(ex-ex,則不等式fx)<f(1+x)的解集為( )

A. (0,+∞) B. (-∞,-

C. (-,+∞) D. (-,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù),曲線在點處的切線方程為.

1)求的解析式;

(2)證明:曲線上任一點處的切線與直線和直線所圍成的三角形面積為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)

1)當(dāng)時,判斷的單調(diào)性,并用定義證明.

2)若對任意,不等式恒成立,求的取值范圍;

3)討論零點的個數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有限集合,定義如下操作過程:從中任取兩個元素、,由中除了、以外的元素構(gòu)成的集合記為;①若,則令;②若,則;這樣得到新集合,例如集合經(jīng)過一次操作后得到的集合可能是也可能得到等,可繼續(xù)對取定的實施操作過程,得到的新集合記作,……,如此經(jīng)過次操作后得到的新集合記作,設(shè),對于,反復(fù)進行上述操作過程,當(dāng)所得集合只有一個元素時,則所有可能的集合______

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

)求函數(shù)的單調(diào)區(qū)間;

)若對定義域每的任意恒成立,求實數(shù)的取值范圍;

)證明:對于任意正整數(shù),不等式恒成立。

查看答案和解析>>

同步練習(xí)冊答案