【題目】如圖,已知橢圓的左、右頂點(diǎn)為,,上、下頂點(diǎn)為,,記四邊形的內(nèi)切圓為.
(1)求圓的標(biāo)準(zhǔn)方程;
(2)已知圓的一條不與坐標(biāo)軸平行的切線交橢圓于P,M兩點(diǎn).
(i)求證:;
(ii)試探究是否為定值.
【答案】(1);(2)(i)詳見解析;(ii)是定值.
【解析】
(1)由已知可得:直線的方程為:,利用四邊形的內(nèi)切圓為可求得內(nèi)切圓的半徑,問題得解。
(2)(i)設(shè)切線,聯(lián)立直線方程與橢圓方程可得:,即可求得,所以,問題得證。
(ii)①當(dāng)直線的斜率不存在時(shí),,②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為:,聯(lián)立直線方程與橢圓方程可得:,即可求得:,同理可得:,問題得解。
(1)因?yàn)?/span>,分別為橢圓的右頂點(diǎn)和上頂點(diǎn),則,坐標(biāo)分別為,可得直線的方程為:
則原點(diǎn)O到直線的距離為,則圓的半徑,
故圓的標(biāo)準(zhǔn)方程為.
(2)(i)可設(shè)切線,
將直線的方程代入橢圓可得,由韋達(dá)定理得:
則,
又與圓相切,可知原點(diǎn)O到的距離,整理得,
則,所以,故.
(ii)由知,
①當(dāng)直線的斜率不存在時(shí),顯然,此時(shí);
②當(dāng)直線的斜率存在時(shí),設(shè)直線的方程為:
代入橢圓方程可得,則,
故,
同理,
則.
綜上可知:為定值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)=|2x-1|+|x+m|.
(l)當(dāng)m=l時(shí),解不等式f(x)≥3;
(2)證明:對(duì)任意x∈R,2f(x)≥|m+1|-|m|.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了保障某種藥品的主要藥理成分在國(guó)家藥品監(jiān)督管理局規(guī)定的值范圍內(nèi),某制藥廠在該藥品的生產(chǎn)過程中,檢驗(yàn)員在一天中按照規(guī)定每間隔2小時(shí)對(duì)該藥品進(jìn)行檢測(cè),每天檢測(cè)4次:每次檢測(cè)由檢驗(yàn)員從該藥品生產(chǎn)線上隨機(jī)抽取20件產(chǎn)品進(jìn)行檢測(cè),測(cè)量其主要藥理成分含量(單位:mg).根據(jù)生產(chǎn)經(jīng)驗(yàn),可以認(rèn)為這條藥品生產(chǎn)線正常狀態(tài)下生產(chǎn)的產(chǎn)品的其主要藥理成分含量服從正態(tài)分布.
(1)假設(shè)生產(chǎn)狀態(tài)正常,記表示某次抽取的20件產(chǎn)品中其主要藥理成分含量在之外的藥品件數(shù),求(精確到0.001)及的數(shù)學(xué)期望;
(2)在一天內(nèi)四次檢測(cè)中,如果有一次出現(xiàn)了主要藥理成分含量在之外的藥品,就認(rèn)為這條生產(chǎn)線在這一天的生產(chǎn)過程可能出現(xiàn)了異常情況,需對(duì)本次的生產(chǎn)過程進(jìn)行檢查;如果在一天中,有連續(xù)兩次檢測(cè)出現(xiàn)了主要藥理成分含量在之外的藥品,則需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè).
①下面是檢驗(yàn)員在某一次抽取的20件藥品的主要藥理成分含量:
10.02 | 9.78 | 10.04 | 9.92 | 10.14 | 10.04 | 9.22 | 10.13 | 9.91 | 9.95 |
10.09 | 9.96 | 9.88 | 10.01 | 9.98 | 9.95 | 10.05 | 10.05 | 9.96 | 10.12 |
經(jīng)計(jì)算得,.其中為抽取的第件藥品的主要藥理成分含量,.用樣本平均數(shù)作為的估計(jì)值,用樣本標(biāo)準(zhǔn)差作為的估計(jì)值,利用估計(jì)值判斷是否需對(duì)本次的生產(chǎn)過程進(jìn)行檢查?
②試確定一天中需停止生產(chǎn)并對(duì)原材料進(jìn)行檢測(cè)的概率(精確到0.001).附:若隨機(jī)變量Z服從正態(tài)分布,則,
.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知F1、F2是橢圓C:的左、右焦點(diǎn),點(diǎn)在橢圓C上,且滿足.
(1)求橢圓C的方程;
(2)直線l:交橢圓C于A、B兩點(diǎn),線段AB的垂直平分線與x軸交于點(diǎn)M(t,0),求mt的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)拋物線的焦點(diǎn)為F,準(zhǔn)線為l,A為C上一點(diǎn),已知以F為圓心,FA為半徑的圓F交l于M.N點(diǎn).
(1)若,的面積為,求拋物線方程;
(2)若A.M.F三點(diǎn)在同一直線m上,直線n與m平行,且n與C只有一個(gè)公共點(diǎn),求坐標(biāo)原點(diǎn)到直線n、m距離的比值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓過點(diǎn),且離心率.
(1)求橢圓的方程;
(2)直線的斜率為,直線與橢圓交于、兩點(diǎn),求的面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(Ⅰ)求函數(shù)y=f(x)圖象的對(duì)稱軸和對(duì)稱中心;
(Ⅱ)若函數(shù),的零點(diǎn)為x1,x2,求cos(x1﹣x2)的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某種水果按照果徑大小可分為四類:標(biāo)準(zhǔn)果、優(yōu)質(zhì)果、精品果、禮品果.某采購(gòu)商從采購(gòu)的一批水果中隨機(jī)抽取個(gè),利用水果的等級(jí)分類標(biāo)準(zhǔn)得到的數(shù)據(jù)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
個(gè)數(shù) | 10 | 30 | 40 | 20 |
(1)若將頻率是為概率,從這個(gè)水果中有放回地隨機(jī)抽取個(gè),求恰好有個(gè)水果是禮品果的概率.(結(jié)果用分?jǐn)?shù)表示)
(2)用樣本估計(jì)總體,果園老板提出兩種購(gòu)銷方案給采購(gòu)商參考.
方案:不分類賣出,單價(jià)為元.
方案:分類賣出,分類后的水果售價(jià)如下:
等級(jí) | 標(biāo)準(zhǔn)果 | 優(yōu)質(zhì)果 | 精品果 | 禮品果 |
售價(jià)(元/kg) | 16 | 18 | 22 | 24 |
從采購(gòu)單的角度考慮,應(yīng)該采用哪種方案?
(3)用分層抽樣的方法從這個(gè)水果中抽取個(gè),再?gòu)某槿〉?/span>個(gè)水果中隨機(jī)抽取個(gè),表示抽取的是精品果的數(shù)量,求的分布列及數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C經(jīng)過A(5,3),B(4,4)兩點(diǎn),且圓心在x軸上.
(1)求圓C的標(biāo)準(zhǔn)方程;
(2)若直線l過點(diǎn)(5,2),且被圓C所截得的弦長(zhǎng)為6,求直線l的方程.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com