已知兩個(gè)正數(shù)a、b的等差中項(xiàng)為4,則a、b的等比中項(xiàng)的最大值為( 。
分析:由等差中項(xiàng)的定義得到關(guān)于a、b的關(guān)系式,再根據(jù)均值不等式化簡(jiǎn)即可得到關(guān)于a、b的等比中項(xiàng)的不等式,即可求最大值
解答:解:∵a、b的等差中項(xiàng)為4
∴a+b=8
又∵a、b是正數(shù)
∴a+b≥2
ab
(a=b時(shí)等號(hào)成立)
ab
≤4

又由等比中項(xiàng)的定義知a、b的等比中項(xiàng)為±
ab

∴a、b的等比中項(xiàng)的最大值為4
故選A
點(diǎn)評(píng):本題考查等差中項(xiàng)和等比中項(xiàng)的定義和均值不等式,要注意兩個(gè)數(shù)的等比中項(xiàng)有兩個(gè),同時(shí)要注意均值不等式的條件.屬簡(jiǎn)單題
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)正數(shù)a、b的等差中項(xiàng)是5,則a2、b2的等比中項(xiàng)的最大值為(  )
A、100B、50C、25D、10

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)正數(shù)a、b的等差中項(xiàng)為5,等比中項(xiàng)為4,則雙曲線
x2
a2
-
y2
b2
=1
的離心率e等于(  )
A、
17
B、
15
C、
15
4
15
D、
17
17
4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知兩個(gè)正數(shù)a、b的等差中項(xiàng)是5,則a2、b2的等比中項(xiàng)的最大值為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆陜西省高二上學(xué)期期中考試?yán)砜茢?shù)學(xué)卷(解析版) 題型:選擇題

已知兩個(gè)正數(shù)a,b的等差中項(xiàng)為4,則a,b的等比中項(xiàng)的最大值為(  )

A.2                B.4                C.8                D.16

 

查看答案和解析>>

同步練習(xí)冊(cè)答案