【題目】已知橢圓Γ的左,右焦點(diǎn)分別為F1(0),F2(0),橢圓的左,右頂點(diǎn)分別為A,B,已知橢圓Γ上一異于AB的點(diǎn)PPA,PB的斜率分別為k1k2,滿足.

1)求橢圓Γ的標(biāo)準(zhǔn)方程;

2)若過橢圓Γ左頂點(diǎn)A作兩條互相垂直的直線AMAN,分別交橢圓ΓM,N兩點(diǎn),問x軸上是否存在一定點(diǎn)Q,使得MQA=∠NQA成立,若存在,則求出該定點(diǎn)Q,否則說明理由.

【答案】12)存在;定點(diǎn)

【解析】

1)設(shè),根據(jù)題意可得,結(jié)合橢圓的方程化簡可得,再由即可求解.

2)根據(jù)設(shè)直線的方程分別為,將直線方程與橢圓方程聯(lián)立求出、,設(shè)軸上存在一定點(diǎn),使得成立,則,利用兩點(diǎn)求斜率化簡即可求得.

解:(1)設(shè),

,,

.

橢圓的標(biāo)準(zhǔn)方程為.

2)由(1)可知左頂點(diǎn),且過點(diǎn)的直線的斜率存在,

設(shè)直線的方程分別為,

設(shè),

聯(lián)立,

直線和橢圓交于兩點(diǎn),

,

,

同理.

設(shè)軸上存在一定點(diǎn),使得成立,則

,則

,

,解得.

因此軸上存在一定點(diǎn),使得成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】四棱錐的底面ABCD是邊長為a的菱形,ABCD,E,F分別是CDPC的中點(diǎn).

1)求證:平面平面PAB;

2MPB上的動點(diǎn),EM與平面PAB所成的最大角為,求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某圓柱的高為2,底面周長為16,則其體積為_________,若該圓柱的三視圖如圖所示,圓柱表面上的點(diǎn)M在正視圖上的對應(yīng)點(diǎn)為A,圓柱表面上的點(diǎn)N在側(cè)視圖上的對應(yīng)點(diǎn)為B,則在此圓柱側(cè)面上,從MN的路徑中,最短路徑的長度為___________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在三棱錐, , , , ,直線與平面, 的中點(diǎn) , .

(Ⅰ)若,求證平面平面;

(Ⅱ)若,求直線與平面所成角的正弦值的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】冠狀病毒是一個大型病毒家族,已知的有中東呼吸綜合征(MERS)和嚴(yán)重急性呼吸綜合征(SARS)等較嚴(yán)重的疾病,新型冠狀病毒(nCoV)是以前從未在人體中發(fā)現(xiàn)的冠狀病毒新毒株,某小區(qū)為進(jìn)一步做好新型冠狀病毒肺炎疫情知識的教育,在小區(qū)內(nèi)開展新型冠狀病毒防疫安全公益課在線學(xué)習(xí),在此之后組織了新型冠狀病毒防疫安全知識競賽在線活動.已知進(jìn)入決賽的分別是甲、乙、丙、丁四位業(yè)主,決賽后四位業(yè)主相應(yīng)的名次為第1,2,34名,該小區(qū)為了提高業(yè)主們的參與度和重視度,邀請小區(qū)內(nèi)的所有業(yè)主在比賽結(jié)束前對四位業(yè)主的名次進(jìn)行預(yù)測,若預(yù)測完全正確將會獲得禮品,現(xiàn)用a,b,c,d表示某業(yè)主對甲、乙、丙、丁四位業(yè)主的名次做出一種等可能的預(yù)測排列,記X|a1|+|b2|+|c3|+|d4|

1)求該業(yè)主獲得禮品的概率;

2)求X的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知的兩個頂點(diǎn)坐標(biāo)是,的周長為是坐標(biāo)原點(diǎn),點(diǎn)滿足.

(Ⅰ)求點(diǎn)的軌跡的方程;

(Ⅱ)設(shè)不過原點(diǎn)的直線與曲線交于兩點(diǎn),若直線的斜率依次成等比數(shù)列,求面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知直三棱柱ABCA1B1C1E,F分別是棱CC1AB的中點(diǎn).

1)證明:CF∥平面AEB1

2)若ACBCAA14,∠ACB90°,求三棱錐B1ECF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在多面體中,兩兩垂直,四邊形是邊長為2的正方形,ACDGEF,且.

1)證明:平面.

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)處的導(dǎo)數(shù)為,,

1)若不等式對任意恒成立,求實數(shù)的取值范圍.

2)若上有且只有一個零點(diǎn),求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案