已知x,y滿足
x+y>-1
x+2y<3
x-y<0
,則z=
y+4
x-5
的取值范圍是
 
考點(diǎn):簡(jiǎn)單線性規(guī)劃
專題:不等式的解法及應(yīng)用
分析:作出不等式組對(duì)應(yīng)的平面區(qū)域,利用z的幾何意義,結(jié)合斜率公式即可得到結(jié)論.
解答: 解:作出不等式組對(duì)應(yīng)的平面區(qū)域,則z的幾何意義是動(dòng)點(diǎn)P(x,y)到定點(diǎn)D(5,-4)的斜率,
由圖象可知,當(dāng)直線經(jīng)過(guò)點(diǎn)B時(shí),直線的斜率最大,經(jīng)過(guò)點(diǎn)A時(shí),斜率最小,
x-y=0
x+y=-1
,解得
x=-
1
2
y=-
1
2
,即B(-
1
2
-
1
2
),
x-y=0
x+2y=3
,解得
x=1
y=1
,即A(1,1),
則AD的斜率為
1+4
1-5
=-
5
4
,BD的斜率為
-
1
2
+4
-
1
2
-5
=-
7
11

-
5
4
<z<-
7
11
,
故答案為:(-
5
4
,-
7
11
點(diǎn)評(píng):本題主要考查線性規(guī)劃的應(yīng)用,利用直線的斜率公式,結(jié)合數(shù)形結(jié)合是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

PM2.5是指大氣中直徑小于或等于2.5微米的顆粒物,也稱可入肺顆粒物,2012年3月2日,國(guó)家環(huán)保部發(fā)布了新修訂的《環(huán)境質(zhì)量標(biāo)準(zhǔn)》,其中規(guī)定:居民區(qū)中的PM2.5年平均濃度不得超過(guò)35微克/立方米,PM2.5的24小時(shí)平均濃度不得超過(guò)75微克/立方米.某城市環(huán)保部門隨機(jī)抽取了一居民區(qū)去年40天的PM2.5的24小時(shí)平均濃度的監(jiān)測(cè)數(shù)據(jù),數(shù)據(jù)統(tǒng)計(jì)如下:
組別 PM2.5(微克/立方米) 頻數(shù)(天) 頻率
第一組 (0,15] 4 0.1
第二組 (15,30] 12 0.3
第三組 (30,45] 8 0.2
第四組 (45,60] 8 0.2
第五組 (60,75] 4 0.1
第六組 (75,90] 4 0.1
(Ⅰ)求該樣本的平均數(shù)的估計(jì)值,并根據(jù)樣本估計(jì)總體的思想,從PM2.5的年平均濃度考慮,判斷該居民區(qū)的環(huán)境是否需要改進(jìn),并說(shuō)明理由;
(Ⅱ)從第五組和第六組的8天中任取2天,求取出2天的PM2.5的24小時(shí)平均濃度都符合《環(huán)境空氣質(zhì)量標(biāo)》的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=2x+sin2x-1圖象的對(duì)稱中心是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知a=
π
2
0
(-cosx)dx,則二項(xiàng)式(x2+
a
x
5的展開(kāi)式中x的系數(shù)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=cos2x-6cosx+1,x∈[0,
π
2
]的值域?yàn)?div id="sh1vkit" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

記函數(shù)f(x)=log
1
2
x的反函數(shù)為g(x),則函數(shù)y=f(x)+g(x)在區(qū)間[1,2]上值域?yàn)?div id="xle6b69" class='quizPutTag' contenteditable='true'> 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(理)在直角坐標(biāo)系xOy中,點(diǎn)M為曲線C:
x=3+cosθ
y=sinθ
(θ為參數(shù))上一點(diǎn).O為坐標(biāo)原點(diǎn),則|OM|的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)x,y∈R,a>1,b>1,若ax=by=3,a+b=6
3
,則
1
x
+
1
y
的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

集合M={(x,y)|x,y∈Z,ln2+ln(4-x)(4+y)≥2ln(y-x+6),則集合M的元素個(gè)數(shù)為(  )
A、13B、12C、11D、10

查看答案和解析>>

同步練習(xí)冊(cè)答案