9.已知正項(xiàng)等比數(shù)列{an}滿足:a7=a6+2a5,若存在兩項(xiàng)am、an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,則$\frac{1}{m}$+$\frac{4}{n}$的最小值為(  )
A.$\frac{3}{2}$B.$\frac{5}{3}$C.$\frac{25}{6}$D.$\frac{4}{3}$

分析 設(shè)正項(xiàng)等比數(shù)列{an}的公比為q>0,由滿足:a7=a6+2a5,可得q2=q+2,解得q=2.根據(jù)存在兩項(xiàng)am、an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,可得$\sqrt{{a}_{1}^{2}{q}^{m+n-2}}$=4a1,m+n=6.對m,n分類討論即可得出.

解答 解:設(shè)正項(xiàng)等比數(shù)列{an}的公比為q>0,∵滿足:a7=a6+2a5,∴q2=q+2,解得q=2.
∵存在兩項(xiàng)am、an使得$\sqrt{{a}_{m}{a}_{n}}$=4a1,∴$\sqrt{{a}_{1}^{2}{q}^{m+n-2}}$=4a1,∴m+n=6.
m,n的取值分別為(1,5),(2,4),(3,3),(4,2),(5,1).
則$\frac{1}{m}$+$\frac{4}{n}$的最小值為$\frac{1}{2}+\frac{4}{4}$=$\frac{3}{2}$.
故選:A.

點(diǎn)評 本題考查了等比數(shù)列的通項(xiàng)公式與性質(zhì)、分類討論方法,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

5.一個家庭中有兩個小孩.假定生男、生女是等可能的,已知這個家庭有一個是女孩,問另一個小孩是男孩的概率是$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在數(shù)列{an}中,對任意n∈N*,都有an+1-2an=0,則$\frac{{2{a_1}+{a_2}}}{{2{a_3}+{a_4}}}$等于( 。
A.2B.4C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.在一次數(shù)學(xué)測驗(yàn)后,班級學(xué)委王明對選答題的選題情況進(jìn)行了統(tǒng)計(jì),如下表:(單位:人)
幾何證明選講坐標(biāo)系與參數(shù)方程不等式選講合計(jì)
男同學(xué)124622
女同學(xué)081220
合計(jì)12121842
(Ⅰ)在統(tǒng)計(jì)結(jié)果中,如果把《幾何證明選講》和《坐標(biāo)系與參數(shù)方程》稱為幾何類,把《不等式選講》稱為代數(shù)類,我們可以得到如下2×2列聯(lián)表:(單位:人)
幾何類代數(shù)類總計(jì)
男同學(xué)16622
女同學(xué)81220
總計(jì)241842
根據(jù)以下列聯(lián)表,在犯錯誤不超過多少的情況下認(rèn)為選做“幾何類”或“代數(shù)類”與性別有關(guān).
(Ⅱ)在原統(tǒng)計(jì)結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從選做不同選做題的同學(xué)中隨機(jī)選出7名同學(xué)進(jìn)行座談.已知學(xué)委王明和兩名數(shù)學(xué)科代表三人都在選做《不等式選講》的同學(xué)中.
①求在這名班級學(xué)委被選中的條件下,兩名數(shù)學(xué)科代表也被選中的概率;
②記抽到數(shù)學(xué)科代表的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表僅供參考:
P(K2≥k00.150.100.050.0250.0100.0050.001
k02.0722.7063.8415.0246.6357.87910.828
參考公式:${K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在等比數(shù)列{an}中,a3a7=4a4=4,則a8等于(  )
A.4B.8C.16D.32

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC的三個內(nèi)角A,B,C所對應(yīng)的邊分別為a,b,c,且滿足bcosC+$\frac{1}{2}$c=a.
(1)求△ABC的內(nèi)角B的大。
(2)若△ABC的面積S=$\frac{\sqrt{3}}{4}$b2,試判斷△ABC的形狀.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.三進(jìn)制數(shù)2022(3)化為六進(jìn)制數(shù)為abc(6),則a+b+c=7.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

18.i+i2+i3+…+i2017=i.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.某廠家擬在“五一”節(jié)舉行大型促銷活動,經(jīng)測算某產(chǎn)品銷售價(jià)格x(單位:元/件)與每日銷售量y(單位:萬件)滿足關(guān)系式y(tǒng)=$\frac{a}{x-2}$+2(x-5)2,其中2<x<5,a為常數(shù),已知銷售價(jià)格為3元時,每日銷售量10萬件.
(1)求a的值;
(2)若該商品的成本為2元/件,試確定銷售價(jià)格x的值,使商場每日銷售該商品所獲得的利潤最大.

查看答案和解析>>

同步練習(xí)冊答案