已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦
(1)求p的值;
(2)拋物線L上是否存在異于點A、B的點C,使得經(jīng)過A、B、C三點的圓和拋物線L在點C處有相同的切線.若存在,求出點C的坐標(biāo);若不存在,請說明理由.
解:(1)由 解得A(0,0),B(2p,2p)
 ,
∴p=2
(2)由(1)得x2=4y,A(0,0),B(4,4)
假設(shè)拋物線L上存在異于點A、B的點C ,
使得經(jīng)過A、B、C三點的圓和拋物線L在點C處有相同的切線令圓的圓心為N(a,b),
則由 
 
  
∵拋物線L在點C處的切線斜率 
又該切線與NC垂直,
  ∴ 
∵t≠0,t≠4,
∴t=﹣2 故存在點C且坐標(biāo)為(﹣2,1).
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦|AB|=4
2

(1)求p的值;
(2)拋物線L上是否存在異于點A、B的點C,使得經(jīng)過A、B、C三點的圓和拋物線L在點C處有相同的切線.若存在,求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦長為
2

(Ⅰ)求p的值;
(Ⅱ)若直角三角形ABC的三個頂點在拋物線L上,且直角頂點B的橫坐標(biāo)為1,過點A、C分別作拋物線L的切線,兩切線相交于點D,直線AC與y軸交于點E,當(dāng)直線BC的斜率在[3,4]上變化時,直線DE斜率是否存在最大值,若存在,求其最大值和直線BC的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知拋物線L的方程為,直線截拋物線L所得弦長為

(Ⅰ)求p的值;

(Ⅱ)若直角三角形的三個頂點在拋物線L上,且直角頂點的橫坐標(biāo)為1,過點分別作拋物線L的切線,兩切線相交于點,直線軸交于點,當(dāng)直線的斜率在上變化時,直線斜率是否存在最大值,若存在,求其最大值和直線的方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年江蘇省天一中學(xué)、海門中學(xué)、鹽城中學(xué)聯(lián)考高三(下)2月調(diào)研數(shù)學(xué)試卷(解析版) 題型:解答題

已知拋物線L的方程為x2=2py(p>0),直線y=x截拋物線L所得弦
(1)求p的值;
(2)拋物線L上是否存在異于點A、B的點C,使得經(jīng)過A、B、C三點的圓和拋物線L在點C處有相同的切線.若存在,求出點C的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案