已知中心在原點(diǎn)O,焦點(diǎn)在x軸上,離心率為的橢圓過點(diǎn)
(1)求橢圓的方程;
(2)設(shè)不過原點(diǎn)O的直線與該橢圓交于P,Q兩點(diǎn),滿足直線的斜率依次成等比數(shù)列,
求面積的取值范圍.
(1) ;(2).
解析試題分析:(1)先設(shè)出橢圓方程為,再根據(jù)條件離心率為及橢圓上的點(diǎn),代入即可得到橢圓方程;(2)先設(shè)出直線方程及,然后聯(lián)立橢圓方程得到及.再由直線的斜率依次成等比數(shù)列得到,由得到.代入中及直線的斜率存在得到,且,然后由點(diǎn)到直線的距離公式及兩點(diǎn)間距離公式得到面積.最后由基本不等式得到,從而得到面積的取值范圍.
試題解析:(1) 由題意可設(shè)橢圓方程為,則(其中,),且,故.
所以橢圓的方程為.
(2)由題意可知,直線的斜率存在且不為0.故可設(shè)直線:,
設(shè),
由,消去得,
則,
且,
故,
因?yàn)橹本的斜率依次成等比數(shù)列,
所以,即.
又,所以,即.
由于直線的斜率存在,且,得,且,
設(shè)為點(diǎn)到直線的距離,則,
,
所以,
故面積的取值范圍為.
考點(diǎn):1.橢圓的標(biāo)準(zhǔn)方程及幾何性質(zhì);2.直線與圓錐曲線的位置關(guān)系;3.點(diǎn)到直線的距離公式;4.基本不等式.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,直線y=kx+b與橢圓交于A、B兩點(diǎn),記△AOB的面積為S.
(1)求在k=0,0<b<1的條件下,S的最大值;
(2)當(dāng)|AB|=2,S=1時(shí),求直線AB的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
在平面直角坐標(biāo)系xOy中,點(diǎn)B與點(diǎn)A(-1,1)關(guān)于原點(diǎn)O對稱,P是動(dòng)點(diǎn),且直線AP與BP的斜率之積等于.
(1)求動(dòng)點(diǎn)P的軌跡方程;
(2)設(shè)直線AP和BP分別與直線x=3交于點(diǎn)M,N,問:是否存在點(diǎn)P使得△PAB與△PMN的面積相等?若存在,求出點(diǎn)P的坐標(biāo);若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.(1)求橢圓C的標(biāo)準(zhǔn)方程;(2)若直線l:與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證: 直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,橢圓短軸的一個(gè)端點(diǎn)與兩個(gè)焦點(diǎn)構(gòu)成的三角形的面積為.
(Ⅰ)求橢圓的方程;
(Ⅱ)已知?jiǎng)又本與橢圓相交于、兩點(diǎn). ①若線段中點(diǎn)的橫坐標(biāo)為,求斜率的值;②若點(diǎn),求證:為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C的中心在坐標(biāo)原點(diǎn),焦點(diǎn)在x軸上,橢圓C上的點(diǎn)到焦點(diǎn)距離的最大值為3,最小值為1.
(Ⅰ)求橢圓C的標(biāo)準(zhǔn)方程;
(Ⅱ)若直線l:與橢圓C相交于A,B兩點(diǎn)(A,B不是左右頂點(diǎn)),且以AB為直徑的圓過橢圓C的右頂點(diǎn)。求證: 直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓:的左、右焦點(diǎn)分別是、,下頂點(diǎn)為,線段的中點(diǎn)為(為坐標(biāo)原點(diǎn)),如圖.若拋物線:與軸的交點(diǎn)為,且經(jīng)過、兩點(diǎn).
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè),為拋物線上的一動(dòng)點(diǎn),過點(diǎn)作拋物線的切線交橢圓于、兩點(diǎn),求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
以點(diǎn)F1(-1,0),F(xiàn)2(1,0)為焦點(diǎn)的橢圓C經(jīng)過點(diǎn)(1,)。
(I)求橢圓C的方程;
(II)過P點(diǎn)分別以為斜率的直線分別交橢圓C于A,B,M,N,求證: 使得
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com