【題目】已知數(shù)列{an}滿足a1=1,an+1=1﹣ ,其中n∈N*
(1)設(shè)bn= ,求證:數(shù)列{bn}是等差數(shù)列,并求出{an}的通項公式;
(2)設(shè)cn= ,數(shù)列{cncn+2}的前n項和為Tn , 求證:Tn<3.

【答案】
(1)證明:∵an+1=1﹣ ,bn= ,

∴bn+1bn=﹣ = = =2(常數(shù)),

∴數(shù)列{bn}是等差數(shù)列.

a1=1,

b1=2,bn=2+(n﹣1)×2=2n,

bn=2n,∴ =2n,

an=


(2)證明:由cn= = =

∴cncn+2= =2 ,

∴數(shù)列{cncn+2}的前n項和為Tn=2 +

=2

=3﹣ <3.

Tn<3


【解析】(1)由an+1=1﹣ ,bn= ,只要證明:bn+1bn=常數(shù)即可得出,再利用等差數(shù)列的通項公式即可得出bn . (2)由cn= = ,可得cncn+2= =2 ,利用“裂項求和”與不等式的性質(zhì)即可得出.
【考點精析】通過靈活運用等差數(shù)列的通項公式(及其變式)和數(shù)列的前n項和,掌握通項公式:;數(shù)列{an}的前n項和sn與通項an的關(guān)系即可以解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)數(shù)列{an}滿足a1=2, ;數(shù)列{bn}的前n項和為Sn , 且 . (Ⅰ)求數(shù)列{an}和{bn}的通項公式;
(Ⅱ)把數(shù)列{an}和{bn}的公共項從小到大排成新數(shù)列{cn},試寫出c1 , c2 , 并證明{cn}為等比數(shù)列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=ax2+bx+3a+b是偶函數(shù),且其定義域為[a﹣1,2a],則( )
A. ,b=0
B.a=﹣1,b=0
C.a=1,b=1
D.a= ,b=﹣1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+2ax+2,x∈[﹣5,5],
(1)當(dāng)a=﹣1時,求函數(shù)的最大值和最小值;
(2)求實數(shù)a的取值范圍,使y=f(x)在區(qū)間[﹣5,5]上是單調(diào)減函數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在正四棱錐S﹣ABCD中,O為頂點在底面內(nèi)的投影,P為側(cè)棱SD的中點,且SO=OD,則直線BC與平面PAC的夾角是(
A.30°
B.45°
C.60°
D.75°

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知正數(shù)數(shù)列{xn}滿足x1= ,xn+1= ,n∈N*
(1)求x2 , x4 , x6
(2)猜想數(shù)列{x2n}的單調(diào)性,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】對于二次函數(shù)y=﹣4x2+8x﹣3,
(1)指出圖象的開口方向、對稱軸方程、頂點坐標(biāo);
(2)求函數(shù)的最大值或最小值;
(3)寫出函數(shù)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列說法正確的是
①任意x∈R,都有3x>2x;
②若a>0,且a≠1,M>0,N>0,則有l(wèi)oga(M+N)=logaMlogaN;
的最大值為1;
④在同一坐標(biāo)系中,y=2x 的圖象關(guān)于y軸對稱.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)=aex﹣x﹣1,a∈R. (Ⅰ)當(dāng)a=1時,求f(x)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)x∈(0,+∞)時,f(x)>0恒成立,求a的取值范圍;
(Ⅲ)求證:當(dāng)x∈(0,+∞)時,ln

查看答案和解析>>

同步練習(xí)冊答案