已知函數(shù)f x)=lnx,gx)=ex

    (I)若函數(shù)φ x) = f x)-,求函數(shù)φ x)的單調(diào)區(qū)間;

    (Ⅱ)設(shè)直線l為函數(shù) yf x) 的圖象上一點(diǎn)Ax0,f x0))處的切線.證明:在區(qū)間(1,+∞)上存在唯一的x0,使得直線l與曲線y=gx)相切.

    注:e為自然對數(shù)的底數(shù).

 

 

 

【答案】

 

解:(Ⅰ)

. 2分

,

∴函數(shù)的單調(diào)遞增區(qū)間為.  4分

   (Ⅱ)∵ ,∴,

∴ 切線的方程為, http://www.7caiedu.cn/

     即,   ①     6分

設(shè)直線與曲線相切于點(diǎn),

,∴,∴.   8分

     ∴直線也為,

,  ②  9分

    由①②得 ,

. 11分

     下證:在區(qū)間(1,+)上存在且唯一.

由(Ⅰ)可知,在區(qū)間上遞增.

,  13分

    結(jié)合零點(diǎn)存在性定理,說明方程必在區(qū)間上有唯一的根,這個(gè)根就是所求的唯一.                                             

    故結(jié)論成立.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=sinxcosφ+cosxsinφ(其中x∈R,0<φ<π).
(1)求函數(shù)f(x)的最小正周期;
(2)若函數(shù)y=f(2x+
π
4
)
的圖象關(guān)于直線x=
π
6
對稱,求φ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)為定義在R上的奇函數(shù),且當(dāng)x>0時(shí),f(x)=(sinx+cosx)2+2cos2x,
(1)求x<0,時(shí)f(x)的表達(dá)式;
(2)若關(guān)于x的方程f(x)-a=o有解,求實(shí)數(shù)a的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=aInx-ax,(a∈R)
(1)求f(x)的單調(diào)遞增區(qū)間;(文科可參考公式:(Inx)=
1
x

(2)若f′(2)=1,記函數(shù)g(x)=x3+x2[f(x)+
m
2
]
,若g(x)在區(qū)間(1,3)上總不單調(diào),求實(shí)數(shù)m的范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x2-bx的圖象在點(diǎn)A(1,f(1))處的切線l與直線3x-y+2=0平行,若數(shù)列{
1
f(n)
}
的前n項(xiàng)和為Sn,則S2010的值為( 。
A、
2011
2012
B、
2010
2011
C、
2009
2010
D、
2008
2009

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)是定義在區(qū)間(-1,1)上的奇函數(shù),且對于x∈(-1,1)恒有f’(x)<0成立,若f(-2a2+2)+f(a2+2a+1)<0,則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

同步練習(xí)冊答案