(2011•東城區(qū)模擬)已知在極坐標(biāo)系下,點(diǎn)A(1,
π
3
),B(3,
3
),O
是極點(diǎn),則A,B兩點(diǎn)間的距離|AB|=
7
7
;△AOB的面積等于
3
3
4
3
3
4
分析:利用極坐標(biāo)系下極角、極徑的意義可得三角形的內(nèi)角∠AOB,由極徑得邊OA,OB的長,結(jié)合余弦定理求|AB|;欲求△AOB的面積,根據(jù)極角根據(jù)三角形的面積公式即可求得.
解答:解:由極坐標(biāo)的意義得:OA=1,OB=3,∠AOB=
π
3
,
由余弦定理得:|AB|2=OA2+OB2-2•OA•OBcos∠AOB=1+9-2×1×3×cos
π
3
=7,
則A,B兩點(diǎn)間的距離|AB|=
7

△OAB的面積:
1
2
OA×OB×sin∠AOB=
1
2
×1×3×sin
π
3
=
3
3
4

即:△OAB的面積:
3
3
4

故答案為:
7
,
3
3
4
點(diǎn)評(píng):本題考查點(diǎn)的極坐標(biāo)的應(yīng)用,能在極坐標(biāo)系中用極坐標(biāo)刻畫點(diǎn)的位置,體會(huì)在極坐標(biāo)系和平面直角坐標(biāo)系中刻畫點(diǎn)的位置的區(qū)別.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)二模)給出下列三個(gè)命題:
①?x∈R,x2>0;
②?x0∈R,使得x02≤x0成立;
③對(duì)于集合M,N,若x∈M∩N,則x∈M且x∈N.
其中真命題的個(gè)數(shù)是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)二模)已知正項(xiàng)數(shù)列{an}中,a1=1,a2=2,2an2=an+12+an-12(n≥2),則a6等于( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)二模)已知雙曲線
x2
a2
-
y2
b2
=1 (a>0,b>0)
,過其右焦點(diǎn)且垂直于實(shí)軸的直線與雙曲線交于M,N兩點(diǎn),O為坐標(biāo)原點(diǎn).若OM⊥ON,則雙曲線的離心率為( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)二模)某地為了調(diào)查職業(yè)滿意度,決定用分層抽樣的方法從公務(wù)員、教師、自由職業(yè)者三個(gè)群體的相關(guān)人員中,抽取若干人組成調(diào)查小組,有關(guān)數(shù)據(jù)見下表,則調(diào)查小組的總?cè)藬?shù)為
9
9
;若從調(diào)查小組中的公務(wù)員和教師中隨機(jī)選2人撰寫調(diào)查報(bào)告,則其中恰好有1人來自公務(wù)員的概率為
3
5
3
5

相關(guān)人員數(shù) 抽取人數(shù)
公務(wù)員 32 x
教師 48 y
自由職業(yè)者 64 4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2011•東城區(qū)二模)已知點(diǎn)P(2,t)在不等式組
x-y-4≤0
x+y-3≤0
表示的平面區(qū)域內(nèi),則點(diǎn)P(2,t)到直線3x+4y+10=0距離的最大值為
4
4

查看答案和解析>>

同步練習(xí)冊(cè)答案