15.若向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(0,-1)$,則向量$\vec a+\vec b$的坐標是(  )
A.(3,-1)B.(-3,1)C.(-3,-1)D.(3,1)

分析 直接利用向量的坐標運算求解即可.

解答 解:向量$\overrightarrow a=(3,2)$,$\overrightarrow b=(0,-1)$,則向量$\vec a+\vec b$=(3,1).
向量$\vec a+\vec b$的坐標是(3,1).
故選:D.

點評 本題考查向量的坐標運算,是基礎(chǔ)題.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:選擇題

11.已知命題p:?x∈(2,+∞),2x>x2;命題q:函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x的一條對稱軸是x=$\frac{7π}{12}$,則下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

6.對于函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,sinx≤cosx}\\{cosx,sinx>cosx}\end{array}\right.$給出下列四個命題:
①該函數(shù)是以π為最小正周期的周期函數(shù);
②當且僅當x=π+2kπ(k∈Z)時,該函數(shù)取得最小值-1;
③該函數(shù)的圖象關(guān)于x=$\frac{5π}{4}$+2kπ(k∈Z)對稱;
④當且僅當2kπ<x<$\frac{π}{2}$+2kπ(k∈Z)時,0<f(x)≤$\frac{\sqrt{2}}{2}$
其中正確命題的序號是③④.(請將所有正確命題的序號都填上)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知:向量$\vec a\;,\;\vec b\;,\;\vec c\;,\;\vec d$及實數(shù)x,y滿足|$\overrightarrow{a}$|=|$\overrightarrow$|=1,$\overrightarrow{c}$=$\overrightarrow{a}$+(x2-3)$\overrightarrow$,$\overrightarrowo7228pc$=(-y)$\overrightarrow{a}$+x$\overrightarrow$.若$\vec a⊥\vec b$,$\vec c⊥\vec d$且|$\overrightarrow{c}$|≤$\sqrt{10}$
(1)求y=f(x)的函數(shù)解析式和定義域
(2)若當$x∈({1\;,\;\sqrt{6}})$時,不等式$\frac{f(x)}{x}$≥mx-7恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

10.已知$|{\overrightarrow a}|=|{\overrightarrow b}|=1$,且$|{\overrightarrow a+k\overrightarrow b}|=\sqrt{3}|{k\overrightarrow a-\overrightarrow b}|(k>0)$,令$f(k)=\overrightarrow a•\overrightarrow b$.
(1)求$f(k)=\overrightarrow a•\overrightarrow b$(用k表示);
(2)當k>0時,$f(k)≥{x^2}-2tx-\frac{5}{2}$對任意的t∈[-2,2]恒成立,求實數(shù)x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.下列推理中屬于歸納推理且結(jié)論正確的是( 。
A.由(1+1)2>21,(2+1)2>22,(3+1)2>23,…,推斷:對一切n∈N*,(n+1)2>2n
B.由f(x)=xcosx滿足f(-x)=-f(x)對?x∈R都成立,推斷:f(x)=xcosx為奇函數(shù)
C.由圓x2+y2=r2的面積S=πr2,推斷:橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1的面積S=πab
D.由an=2n-1,求出S1=12,S2=22,S3=32,…,推斷:數(shù)列{an}的前n項和Sn=n2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.已知橢圓mx2+ny2=1(n>m>0)的離心率為$\frac{{\sqrt{2}}}{2}$,則雙曲線mx2-ny2=1的離心率為( 。
A.2B.$\frac{{\sqrt{6}}}{2}$C.$\frac{{2\sqrt{3}}}{3}$D.$\frac{{\sqrt{6}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.過點(-1,3),且圓心為(3,0)的圓的方程為(x-3)2+y2=25.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

5.函數(shù)f(x)=$\frac{sin4x}{1+cos4x}$的最小正周期是$\frac{π}{2}$.

查看答案和解析>>

同步練習冊答案