把“五進制”數(shù)234(5)轉(zhuǎn)化為“十進制”數(shù),再把它轉(zhuǎn)化為“二進制”數(shù).
考點:進位制
專題:計算題
分析:首先把五進制數(shù)字轉(zhuǎn)化成十進制數(shù)字,用所給的數(shù)字最后一個數(shù)乘以5的0次方,依次向前類推,相加得到十進制數(shù)字,再用這個數(shù)字除以2,倒序取余即可..
解答: 解:234(5)=2×52+3×51+4×50=69(10)
69÷2=34…1
34÷2=17…0
17÷2=8…1
8÷2=4…0
4÷2=2…0
2÷2=1…0
1÷2=0…1
故:69(10)=1000101 (2)
故:234(5)=69(10)=1000101(2)(10分)
點評:本題考查進位制之間的轉(zhuǎn)化,本題涉及到三個進位制之間的轉(zhuǎn)化,實際上不管是什么之間的轉(zhuǎn)化,原理都是相同的,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知x>0,y>0,x+y=1,則
4
x
+
1
y
的最小值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知向量
OA
=(2,2),
OB
=(-4,1),點P在x軸的非負(fù)半軸上(O為原點).
(1)當(dāng)
PA
PB
取得最小值時,求
OP
的坐標(biāo);
(2)設(shè)∠APB=θ,當(dāng)點P滿足(1)時,求cosθ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|x2-2x-3=0},B={x|x2+x-12<0},則A∩B等于( 。
A、{-1}B、{-3}
C、{1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知命題p:x2+2x-3>0;命題q:x>a,且?q的一個充分不必要條件是?p,則實數(shù)a的取值范圍是( 。
A、(-∞,1]
B、(-∞,-3]
C、[-1,+∞)
D、[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

計算機執(zhí)行如圖的程序段后,輸出的結(jié)果是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=xsinx2在區(qū)間[0,4]上的零點個數(shù)為( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某供電公司為了合理分配電力,采用分段計算電費政策,月用電量x(度)與相應(yīng)電費y(元)之間的函數(shù)關(guān)系的圖象如圖所示.
(1)填空:月用電量為100度時,應(yīng)交電費
 
元;
(2)當(dāng)x≥100時,y與x之間的函數(shù)關(guān)系式為
 
;
(3)月用電量為260度時,應(yīng)交電費
 
元.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長為1的正方體AC1中,E為AB的中點,點P為側(cè)面BB1C1C內(nèi)一動點(含邊界),若動點P始終滿足PE⊥BD1,則動點P的軌跡的長度為( 。
A、
1
2
B、
2
2
C、
3
3
D、
2
3

查看答案和解析>>

同步練習(xí)冊答案