4.已知數(shù)列{an}滿足an+1=$\frac{a_n-4}{3}$,且a1=2,則$\underset{lim}{n→∞}$an=-2.

分析 可設(shè)an+1-t=$\frac{1}{3}$(an-t),解得t=-2,則an+1+2=$\frac{1}{3}$(an+2),運(yùn)用等比數(shù)列的通項(xiàng)公式,可得數(shù)列{an}的通項(xiàng)公式,再由數(shù)列極限公式,即可得到所求值.

解答 解:an+1=$\frac{a_n-4}{3}$,
可設(shè)an+1-t=$\frac{1}{3}$(an-t),
解得t=-2,
則an+1+2=$\frac{1}{3}$(an+2),
可得an+2=(a1+2)•($\frac{1}{3}$)n-1,
=4•($\frac{1}{3}$)n-1
即an=4•($\frac{1}{3}$)n-1-2,
則$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$[4•($\frac{1}{3}$)n-1-2]
=0-2=-2.
故答案為:-2.

點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法和極限的求法,注意運(yùn)用待定系數(shù)法和極限公式,考查化簡運(yùn)算能力,屬于中檔題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

17.已知點(diǎn)P(x,y)在圓x2+y2=1上運(yùn)動(dòng),則$\frac{y}{x+2}$的最大值為$\frac{\sqrt{3}}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.平面直角坐標(biāo)系中,△ABC的三個(gè)頂點(diǎn)為A(-3,0),B(2,1),C(-2,3),求:
(Ⅰ)BC邊上高線AH所在直線的方程;
(Ⅱ)若直線l過點(diǎn)B且橫、縱截距互為相反數(shù),求直線l的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知△ABC的三個(gè)頂點(diǎn)A(m,n)、B(2,1)、C(-2,3);
(1)求BC邊所在直線的方程;
(2)BC邊上中線AD的方程為2x-3y+6=0,且S△ABC=7,求點(diǎn)A的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.對(duì)任意實(shí)數(shù)k,直線(3k+2)x-ky-2=0與圓x2+y2-2x-2y-2=0的位置關(guān)系為( 。
A.相交B.相切或相離C.相離D.相交或相切

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)x軸、y軸正方向上的單位向量分別是$\overrightarrow{i}$、$\overrightarrow{j}$,坐標(biāo)平面上點(diǎn)列An、Bn(n∈N*)分別滿足下列兩個(gè)條件:①$\overrightarrow{OA_1}$=$\overrightarrow{j}$且$\overrightarrow{A_nA_{n+1}}$=$\overrightarrow{i}$+$\overrightarrow{j}$;②$\overrightarrow{OB_1}$=4$\overrightarrow{i}$且$\overrightarrow{B_nB_{n+1}}$=$\frac{1}{n(n+1)}$×4$\overrightarrow{i}$;
(1)寫出$\overrightarrow{OA_2}$及$\overrightarrow{OA_3}$的坐標(biāo),并求出$\overrightarrow{OA_n}$的坐標(biāo);
(2)若△OAnBn+1的面積是an,求an(n∈N*)的表達(dá)式;
(3)對(duì)于(2)中的an,是否存在最大的自然數(shù)M,對(duì)一切n∈N*都有an≥M成立?若存在,求出M,若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.若二次函數(shù)f(x)=(m-1)x2+2mx+1是偶函數(shù),則f(x)在區(qū)間(-∞,0]上是(  )
A.增函數(shù)B.先增后減函數(shù)C.減函數(shù)D.先減后增函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.(1)-(-2)4+(-2)-3+(-$\frac{1}{2}$)-3-(-$\frac{1}{2}$)3;
(2)lg14-2lg$\frac{7}{3}$+lg7-lg18.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.在等差數(shù)列{an}中,S10=4,S20=20,那么S30=48.

查看答案和解析>>

同步練習(xí)冊答案