分析 可設(shè)an+1-t=$\frac{1}{3}$(an-t),解得t=-2,則an+1+2=$\frac{1}{3}$(an+2),運(yùn)用等比數(shù)列的通項(xiàng)公式,可得數(shù)列{an}的通項(xiàng)公式,再由數(shù)列極限公式,即可得到所求值.
解答 解:an+1=$\frac{a_n-4}{3}$,
可設(shè)an+1-t=$\frac{1}{3}$(an-t),
解得t=-2,
則an+1+2=$\frac{1}{3}$(an+2),
可得an+2=(a1+2)•($\frac{1}{3}$)n-1,
=4•($\frac{1}{3}$)n-1,
即an=4•($\frac{1}{3}$)n-1-2,
則$\underset{lim}{n→∞}$an=$\underset{lim}{n→∞}$[4•($\frac{1}{3}$)n-1-2]
=0-2=-2.
故答案為:-2.
點(diǎn)評(píng) 本題考查數(shù)列的通項(xiàng)公式的求法和極限的求法,注意運(yùn)用待定系數(shù)法和極限公式,考查化簡運(yùn)算能力,屬于中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 相交 | B. | 相切或相離 | C. | 相離 | D. | 相交或相切 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 增函數(shù) | B. | 先增后減函數(shù) | C. | 減函數(shù) | D. | 先減后增函數(shù) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com