函數(shù)f(x)=
x
+
1
x-1
的定義域為
 
考點:函數(shù)的定義域及其求法
專題:函數(shù)的性質(zhì)及應用
分析:由函數(shù)解析式可得 x≥0 且x-1≠0,由此求得函數(shù)的定義域.
解答: 解:要使函數(shù)有意義,x需滿足:
x≥0
x-1≠0
,
可得 x≥0 且x≠1,
故函數(shù)的定義域為 {x|x≥0且x≠1},
故答案為:{x|x≥0且x≠1}.
點評:本題主要考查求函數(shù)的定義域的方法,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

已知角θ的頂點與原點重合,始邊與x軸的正半軸重合,角θ的正弦線長為
3
2
,則cos2θ=( 。
A、-
1
2
B、
2
5
C、
1
2
D、
1
5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

閱讀如圖所示的程序框圖,運行相應的程序,輸出s的值為(  )
A、62B、126
C、254D、510

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設等差數(shù)列{an}的前n項和為Sn,且滿足S15>0,S16<0,則當Sn最大時,n=( 。
A、6B、7C、8D、9

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

不等式x2-2x-3<0成立的一個必要不充分條件是( 。
A、-1<x<3
B、0<x<3
C、-2<x<3
D、-2<x<1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)g(x)=alnx-(1+a)x,h(x)=-
1
2
x2
,其中a為實數(shù).
(1)令f(x)=g(x)-h(x),求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若對定義域內(nèi)的所有x,函數(shù)g(x)的圖象都不可能在h(x)的圖象的下方,求實數(shù)a的取值范圍;
(3)對任意的正整數(shù)s、t,試比較代數(shù)式
1
ln(s+1)
+
1
ln(s+2)
+…+
1
ln(s+t)
t
s2+st
的大小關系并證明.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設f(x)=kx-
k
x
-2lnx
(1)若f′(-2)=0求過點(2,f(2))處的切線方程;
(2)若f(x) 在其定義域內(nèi)為單調(diào)增函數(shù),求k取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知函數(shù)f(x)=x2-alnx在[1,2]上是增函數(shù),g(x)=x-a
x
在(0,1]上是減函數(shù).
(Ⅰ)求f(x)、g(x)的表達式;
(Ⅱ)當b>-1時,若f(x)≥2bx-
1
x2
在x∈(0,1]內(nèi)恒成立,求b的取值的范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

某同學在研究函數(shù)f(x)=
x2+1
+
x2-6x+10
的性質(zhì)時,受到兩點間距離公式的啟發(fā),將f(x)變形為f(x)=
(x-0)2+(0-1)2
+
(x-3)2+(0+1)2
,則f(x)表示|PA|+|PB|(如左圖),則 
①f(x)的圖象是中心對稱圖形;
②f(x)的圖象是軸對稱圖形;
③函數(shù)f(x)的值域為[
13
,+∞)
;
④函數(shù)f(x)在區(qū)間(-∞,3)上單調(diào)遞減;
⑤方程f[f(x)]=1+
10
有兩個解.
上述關于函數(shù)f(x)的描述正確的個數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

同步練習冊答案