15.不等式2≥$\frac{1}{x-1}$的解集為( 。
A.(-$\frac{3}{2}$,1)B.(-∞,1)∪($\frac{3}{2}$,+∞)C.(1,$\frac{3}{2}$)D.(-∞,1)∪[$\frac{3}{2}$,+∞)

分析 不等式即 $\frac{2x-3}{x-1}$≥0,即 (2x-3)(x-1)≥0,且x≠1,由此求得x的范圍.

解答 解:不等式2≥$\frac{1}{x-1}$,即 $\frac{2x-3}{x-1}$≥0,即 (2x-3)(x-1)≥0,且x≠1,
∴x<1,或 x≥$\frac{3}{2}$,
故選:D.

點(diǎn)評(píng) 本題主要考查分式不等式的解法,一元二次不等式的解法,體現(xiàn)了等價(jià)轉(zhuǎn)化的數(shù)學(xué)思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.函數(shù)f(x)=cos2x是( 。
A.周期為π的偶函數(shù)B.周期為π的奇函數(shù)
C.周期為2π的偶函數(shù)D.周期為2π的奇函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.在數(shù)列{an}中,a1=-2,an+1=$\frac{{1+{a_n}}}{{1-{a_n}}}$,則a2011=( 。
A.-2B.-$\frac{1}{3}$C.$\frac{1}{2}$D.3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.某社區(qū)成年人中老年人140人,中年人210,青年350人,從所有成年人中采取分層抽樣的方法抽取m人進(jìn)行
問卷調(diào)查,已知老年人中抽取的人數(shù)位4人,則中年人中抽取的人數(shù)是6 人.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{2x+a,x≤1}\\{lo{g}_{2}x,x>1}\end{array}\right.$,若f(f($\frac{1}{2}$))=4,則a=( 。
A.16B.15C.2D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知函數(shù)f(x)=$\frac{\left|x\right|}{x+2}$-kx2(k∈R)有兩個(gè)零點(diǎn),則k的取值范圍k<0或0<k<1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.若函數(shù)f(x)=|x-1|-|x-a|是奇函數(shù)而不是偶函數(shù),且f(x)不恒為0,則(a+1)2016的值(  )
A.0B.1C.22016D.32016

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.函數(shù)f(x)=-x2+4x,x∈[0,5]值域( 。
A.[-5,4]B.[-5,0]C.[0,-5]D.[0,5]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,在四棱錐S-ABCD中,底面ABCD為菱形,∠BAD=60°,平面SAD⊥平面ABCD,SA=SD,E,P,Q分別是棱AD,SC,AB的中點(diǎn).
(1)(文理)求證:PQ∥平面SAD;
(2)(理)如果SA=AB=2,求直線SA與平面SEQ成角的余弦值.
(文)如果SA=AB=2,求點(diǎn)C到平面SAB的距離.

查看答案和解析>>

同步練習(xí)冊(cè)答案