【題目】已知,且,設(shè)命題:函數(shù)上單調(diào)遞減;命題:函數(shù)上為增函數(shù),

(1)若“”為真,求實數(shù)的取值范圍

(2)若“”為假,“”為真,求實數(shù)的取值范圍.

【答案】(1);(2)

【解析】試題分析:分別求出為真時, 的取值范圍.

(1)pq為真,則p,q均為真,求交集即可;

(2)“pq”為真,“pq”為假,則pq假或pq真.分兩種情況進行求解最后求并集即可.

試題解析:

(1)∵函數(shù)ycxR上單調(diào)遞減,∴0<c<1,即p:0<c<1

又∵f(x)=x2-2cx+1在上為增函數(shù),∴c,即q.

∴“pq”為真時,

(2)∵c>0且c≠1,∴ p: c>1, qc≠1..

又∵“pq”為真,“pq”為假,則pq假或pq真.

當(dāng)p真,q假時,{c|0<c<1}∩{c | ,且c≠1}={c| <c<1}.

當(dāng)p假,q真時,{c|c>1}∩{c|0<c }=.

綜上所述,實數(shù)c的取值范圍是{c| <c<1}.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(本小題滿分分)

已知圓,過點作直線交圓、兩點.

)當(dāng)經(jīng)過圓心時,求直線的方程.

)當(dāng)直線的傾斜角為時,求弦的長.

)求直線被圓截得的弦長時,求以線段為直徑的圓的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】定義在上的函數(shù),如果滿足:對任意,存在常數(shù),都有成立,則稱上的有界函數(shù),其中稱為函數(shù)的上界,已知函數(shù)

Ⅰ)若是奇函數(shù),求的值.

Ⅱ)當(dāng)時,求函數(shù)上的值域,判斷函數(shù)上是否為有界函數(shù),并說明理由.

Ⅲ)若函數(shù)上是以為上界的函數(shù),求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=|x﹣a|,不等式f(x)≤3的解集為[﹣1,5].
(Ⅰ)求實數(shù)a的值;
(Ⅱ)若f(x)+f(x+5)≥m對一切實數(shù)x恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系中,已知圓圓心為,過點且斜率為的直線與圓相交于不同的兩點、

)求的取值范圍;

)是否存在常數(shù),使得向量共線?如果存在,求值;如果不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某市為了制定合理的節(jié)水方案,對居民用水情況進行了調(diào)查,通過抽樣,獲得了某年100位居民每人的月均用水量(單位:噸),將數(shù)據(jù)按照[0,0.5),[0.5,1),[4,4.5]分成9組,制成了如圖所示的頻率分布直方圖.

(I)求直方圖中的a值;

(II)設(shè)該市有30萬居民,估計全市居民中月均用水量不低于3噸的人數(shù),說明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】父親節(jié)小明給爸爸從網(wǎng)上購買了一雙運動鞋,就在父親節(jié)的當(dāng)天,快遞公司給小明打電話話說鞋子已經(jīng)到達快遞公司了,馬上可以送到小明家,到達時間為晚上6點到7點之間,小明的爸爸晚上5點下班之后需要坐公共汽車回家,到家的時間在晚上5點半到6點半之間。求小明的爸爸到家之后就能收到鞋子的概率(快遞員把鞋子送到小明家的時候,會把鞋子放在小明家門口的“豐巢”中)為 __________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,,,F分別在線段BCAD上,,將矩形ABEF沿EF折起記折起后的矩形為MNEF,且平面平面ECDF

求證:平面MFD;

,求證:;

求四面體NFEC體積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐中,底面是邊長為的正方形,側(cè)面,且,若、分別為的中點.

(1)求證:∥平面;

(2)求證:平面平面.

(3)求四棱錐的體積.

查看答案和解析>>

同步練習(xí)冊答案