14.已知等差數(shù)列{an}的公差d≠0,且a1、a3、a9成等比數(shù)列,則$\frac{{{a_1}+{a_4}}}{{{a_2}+{a_6}}}$的值是$\frac{5}{8}$.

分析 因為{an}是等差數(shù)列,故a1、a3、a9都可用d表達,又因為a1、a3、a9恰好是等比數(shù)列,所以有a32=a1a9,即可求出d,即可求比值.

解答 解:等差數(shù)列{an}中,a1=a1,a3=a1+2d,a9=a1+8d,
因為a1、a3、a9恰好是某等比數(shù)列,
所以有a32=a1a9,即(a1+2d)2=a1(a1+8d),
解得d=a1,
則$\frac{{{a_1}+{a_4}}}{{{a_2}+{a_6}}}$=$\frac{2{a}_{1}+3d}{2{a}_{1}+6d}$=$\frac{5d}{8d}$=$\frac{5}{8}$.
故答案是:$\frac{5}{8}$.

點評 本題考查等差數(shù)列的性質(zhì),屬基礎(chǔ)知識、基本運算的考查.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.等比數(shù)列{an}的前n項和為Sn,若S10=10,S20=30,則S30=(  )
A.10B.70C.30D.90

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.若直線y=k(x+1)(k>0)與函數(shù)y=|sinx|的圖象恰有六個公共點A(x1,y1),B(x2,y2),C(x3,y3),D(x4,y4),E(x5,y5),F(xiàn)(x6,y6),其中x1<x2<x3<x4<x5<x6,則有(  )
A.sinx6=1B..sinx6=(x6+1)cosx6
C.sinx6=kcosx6D.sinx6=(x6+1)tanx6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.根據(jù)市場調(diào)查,某商品在最近的40天內(nèi)的價格f(t)與時間t滿足關(guān)系f(t)=$\left\{\begin{array}{l}{t+20,0≤t<20,t∈N}\\{-t+42,20≤t≤40,t∈N}\end{array}\right.$,銷售量g(t)與時間t滿足關(guān)系g(t)=-t+50(0≤t≤40,t∈N),設(shè)商品的日銷售額為F(t)(銷售量與價格之積).求:
(1)商品的日銷售額F(t)的解析式;
(2)商品的日銷售額F(t)的最大值.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知a、b、c、d∈R,“a+c>b+d”是“a>b,c>d”的(  )條件.
A.充分不必要B.必要不充分
C.充要D.既不充分也不必要

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.下列說法之和正確的序號是:②④.
①函數(shù)y=log2(x2-2x-3)的單調(diào)增區(qū)間為(1,+∞);
②若扇形的周長是6cm,面積是2cm2,則扇形的中心角的弧度數(shù)是1或4;
③函數(shù)y=lg(x+1)+lg(x-1)為偶函數(shù);
④若x+$\frac{1}{x}$=2$\sqrt{2}$,則$\frac{1+{x}^{4}}{{x}^{2}}$的值為6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.遞增數(shù)列{an}是等差數(shù)列,a2=4,a4+a6=20.
(1)求數(shù)列{an}的通項公式;
(2)求數(shù)列$\left\{{\frac{4}{{{a_n}{a_{n+1}}}}}\right\}$的前n項和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知直線l:x+y-6=0和曲線M:x2+y2-2x-2y-2=0,點A在直線上,若直線AC與曲線M至少有一個公共點C,且∠MAC=30°,則點A的橫坐標(biāo)的取值范圍是.[1,5].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.在圓x2+y2=4上取一點P,過點P作x軸的垂線段PD,D為垂足.
(1)當(dāng)點P在圓上運動時,線段PD的中點M的軌跡是什么?
(2)若直線y=x+$\frac{1}{2}$與(1)問中的點M的軌跡相交于A、B兩點,求|AB|.

查看答案和解析>>

同步練習(xí)冊答案