已知橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,以點(diǎn)為圓心的圓與軸相切,且同時(shí)與軸相切于橢圓的右焦點(diǎn),則橢圓的離心率為         

 

【答案】

【解析】

試題分析:根據(jù)題意可知,橢圓的右焦點(diǎn)為,點(diǎn)在橢圓上,由于以點(diǎn)為圓心的圓與軸相切,可知圓心的橫坐標(biāo)即為圓的半徑,且同時(shí)與軸相切于橢圓的右焦點(diǎn),則說明了PF垂直于x軸,且利用橢圓的通徑長(zhǎng)為則說明半徑r=,那么點(diǎn)P的橫坐標(biāo)為C,故可知,因此答案為

考點(diǎn):本試題考查了橢圓的性質(zhì)運(yùn)用。

點(diǎn)評(píng):解決該試題的關(guān)鍵是能結(jié)合題目中圓于兩坐標(biāo)軸相切,則說明了點(diǎn)P的坐標(biāo),然后利用半徑一樣來(lái)得到a,b,c的關(guān)系式,進(jìn)而求解s橢圓的離心率,屬于中檔題。

 

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓的右焦點(diǎn)為F,右準(zhǔn)線為l,A、B是橢圓上兩點(diǎn),且|AF|:|BF|=3:2,直線AB與l交于點(diǎn)C,則B分有向線段
AC
所成的比為(  )
A、
1
2
B、2
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2013-2014學(xué)年四川成都外國(guó)語(yǔ)學(xué)校高三下二月月考文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的右焦點(diǎn)為F210),點(diǎn) 在橢圓上.

1)求橢圓方程;

2)點(diǎn)在圓上,M在第一象限,過M作圓的切線交橢圓于P、Q兩點(diǎn),問|F2P|+|F2Q|+|PQ|是否為定值?如果是,求出定值,如不是,說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年云南省昆明市高三復(fù)習(xí)適應(yīng)性檢測(cè)文科數(shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓的右焦點(diǎn)為,上頂點(diǎn)為B,離心率為,圓軸交于兩點(diǎn)

(Ⅰ)求的值;

(Ⅱ)若,過點(diǎn)與圓相切的直線的另一交點(diǎn)為,求的面積

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年河北省保定市高三上學(xué)期期末調(diào)研考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題

已知橢圓 的右焦點(diǎn)為,設(shè)短軸的一個(gè)端點(diǎn)為,原點(diǎn)到直線的距離為,過原點(diǎn)和軸不重合的直線與橢圓相交于兩點(diǎn),且.

(1) 求橢圓的方程;

(2) 是否存在過點(diǎn)的直線與橢圓相交于不同的兩點(diǎn)且使得成立?若存在,試求出直線的方程;若不存在,請(qǐng)說明理由.

 

 

查看答案和解析>>

同步練習(xí)冊(cè)答案