如圖,已知AB是半圓O的直徑,AB=8,M,N,P是將半圓圓周四等分的三個分點,從A,B,M,N,P這5個點中任取3個點,則這3個點組成直角三角形的概率為(  )
A、
7
10
B、
1
2
C、
3
10
D、
1
10
考點:列舉法計算基本事件數(shù)及事件發(fā)生的概率
專題:概率與統(tǒng)計
分析:這是一個古典概型問題,我們可以列出從A、B、M、N、P這5個點中任取3個點,可能組成的所有三角形的個數(shù),然后列出其中是直角三角形的個數(shù),代入古典概型公式即可求出答案.
解答: 解:從A、B、M、N、P這5個點中任取3個點,一共可以組成10個三角形:ABM、ABN、ABP、AMN、AMP、ANP、BMN、BMP、BNP、MNP,其中是直角三角形的只有ABM、ABN、ABP3個,所以這3個點組成直角三角形的概率P=
3
10
,
故選:C.
點評:本題考查古典概型的概率問題,掌握古典概型的計算步驟和計算公式是解答本題的關(guān)鍵.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知圓的方程式x2+y2=36,記過點P(1,2)的最長弦和最短弦分別為AB、CD,則直線AB、CD的斜率之和等于( 。
A、-1
B、
3
2
C、1
D、-
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

點M在圓心為C1的方程x2+y2+6x-2y+1=0上,點N在圓心為C2的方程x2+y2+2x+4y+1=0上,求|MN|的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

從圓(x-1)2+y2=1外一點P(2,4)引這個圓的切線,則此切線方程為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

過拋物線E:y2=2px(p>0)的焦點F的直線l交E于A、B兩點,由點A、B作拋物線準(zhǔn)線m的垂線,垂足分別為點D、C,向四邊形ABCD內(nèi)部隨機(jī)投一點,則該點落在△CFD內(nèi)部的概率的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

班級需要在甲、乙、丙三位同學(xué)中隨機(jī)的抽取兩位參加一項活動,則正好抽到的是甲乙的概率是(  )
A、
1
2
B、
1
5
C、
1
3
D、
4
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若用m,n表示兩條不同的直線,用α表示一個平面,則下列命題正確的是(  )
A、若m∥n,n?α,則m∥α
B、若m∥α,n?α,則m∥n
C、若m⊥n,n?α,則m⊥α
D、若m⊥α,n?α,則m⊥n

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若對任意一點O和不共線的三點A、B、C有
OP
=x
OA
+y
OB
+z
OC
,則x+y+z=1是四點P、A、B、C共面的(  )
A、必要不充分條件
B、充分不必要條件
C、充要條件
D、既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在半徑為1的半圓中,作如圖所示的等腰梯形ABCD,CE垂直下底AD于E,設(shè)DE=x(0<x<1),CE=h,梯形ABCD的周長為L.
(1)求h關(guān)于x的函數(shù)解析式,并指出定義域;
(2)試寫出L與關(guān)于x的函數(shù)解析式,并求周長L的最大值.

查看答案和解析>>

同步練習(xí)冊答案