考點:同角三角函數(shù)基本關(guān)系的運用
專題:三角函數(shù)的求值
分析:由條件利用同角三角函數(shù)的基本關(guān)系,求得(1)
和(2)
的值.
解答:
解:∵tanα=2,
(1)∴
=
=
=
.
(2)∴
=
sin2α•tanα+1 |
sin2α•tanα-tanα |
=
(1-cos2α)×2+1 |
(1-cos2α)×2-2 |
=
=
=-
.
點評:本題主要考查同角三角函數(shù)的基本關(guān)系的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:
題型:
已知f(x)的定義域為R,對任意x∈R,有f(x+2)=f(x+1)-f(x),且f(1)=lg3-lg2,f(2)=lg3+lg5,則f(2013)的值為( 。
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=x2+mx+3的有兩個零點x1,x2(x1≠x2),試問:
(1)m為何值時,該函數(shù)一個零點大于1,一個零點小于1
(2)m為何值時,該函數(shù)兩個零點均滿足x1∈(-3,-1),x2∈(-3,-1).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
某種產(chǎn)品的廣告費支出x與銷售額y(單位:百萬元)之間有如下對應(yīng)數(shù)據(jù):
(1)畫出散點圖;
(2)求回歸直線方程;
(3)試預(yù)測廣告費支出為10百萬元時,銷售額多大?
參考公式:b=
n | | i-1 | (x1-(y1- |
n | | i-1 | (x1-)2 |
=
n | | i-1 | xiyi-n |
n | | i-1 | x12-n |
.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
在數(shù)列{a
n}中,a
1=1,2a
n+1=(1+
)
2a
n(1)求{a
n}的通項公式;
(2)令b
n=a
n+1-
a
n,求數(shù)列{b
n}的前n項和S
n.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
設(shè)a是實數(shù),f(x)=a-
(x∈R)
(1)證明:不論a為何實數(shù),f(x)均為增函數(shù)
(2)試確定a的值,使得f(-x)+f(x)=0恒成立.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=ax
2+ln(x+1).
(1)當a=-
時,求函數(shù)f(x)的單調(diào)區(qū)間;
(2)當x∈[0,+∞)時,不等式f(x)≤x恒成立,求實數(shù)a的取值范圍.
(3)求證:(1+
)(1+
)(1+
)…[1+
]<e
(其中n∈N
*,
e是自然對數(shù)的底數(shù)).
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
已知函數(shù)f(x)=a
x+b的圖象如圖所示.
(1)求a與b的值;
(2)求x∈[2,4]的最大值與最小值.
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:
題型:
圓柱內(nèi)有一個四棱柱,四棱柱的底面是圓柱底面的內(nèi)接正方形.已知圓柱表面積為6π,且底面圓直徑與母線長相等,求四棱柱的體積.
查看答案和解析>>