15.已知f(x)=ex,g(x)=$\left\{\begin{array}{l}{\sqrt{1-(x+2)^{2}},-3≤x≤-1}\\{2g(x-2),-1<x≤1}\end{array}\right.$,則在區(qū)間[-3,1]上的函數(shù)y=f(x)-g(x)的零點(diǎn)個(gè)數(shù)為4.

分析 求出g(x)的解析式,作出兩函數(shù)的圖象,根據(jù)函數(shù)圖象的交點(diǎn)個(gè)數(shù)判斷.

解答 解:當(dāng)x∈(-1,1]時(shí),x-2∈(-3,-1],
∴g(x)=2g(x-2)=2$\sqrt{1-{x}^{2}}$,x∈(-1,1].
做出f(x)與g(x)的函數(shù)圖象如下:

由圖象可知兩圖象共有4個(gè)交點(diǎn),
∴y=f(x)-g(x)共有4個(gè)零點(diǎn).
故答案為4.

點(diǎn)評(píng) 本題考查了函數(shù)解析式的求解,函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.設(shè)數(shù)列{an}的前n項(xiàng)和為Sn,且2an+Sn=-1.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若實(shí)數(shù)λ滿足$\frac{1}{{{{({S_n}+1)}^2}}}-\frac{1}{a_n^2}≥\frac{λ}{{{a_n}{a_{n+1}}}}$,求λ的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.(1)已知$sinα=\frac{3}{5}$,$cosβ=\frac{4}{5}$,其中$α∈(\frac{π}{2},π)$,$β∈(0,\frac{π}{2})$,求cos(α+β);
(2)已知$cosα=\frac{1}{7}$,$cos(α-β)=\frac{13}{14}$,且$0<β<α<\frac{π}{2}$,求β的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.總體由編號(hào)為01,02,03,…,49,50的50個(gè)個(gè)體組成,利用隨機(jī)數(shù)表(以下選取了隨機(jī)數(shù)表中的第1行和第2行)選取5個(gè)個(gè)體,選取方法是從隨機(jī)數(shù)表第1行的第9列和第10列數(shù)字開始由左向右讀取,則選出來的第4個(gè)個(gè)體的編號(hào)為( 。
78 16 65 72 08  02 63 14 07 02  43 69 69 38 74
32 04 94 23 49  55 80 20 36 35  48 69 97 28 01
A.05B.09C.07D.20

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.在空間直角坐標(biāo)系中,已知點(diǎn)A(1,2,1),B(1,1,0),C(0,2,0),則以三點(diǎn)為頂點(diǎn)構(gòu)成的三角形的形狀是等邊三角形 .

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.求傾斜角為直線y=-x+1的傾斜角的$\frac{1}{3}$,且分別滿足下列條件的直線方程:
(1)經(jīng)過點(diǎn)(-4,1);
(2)在y軸上的截距為-10.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.我國(guó)古代數(shù)學(xué)名著《數(shù)書九章》有“米谷粒分”題:糧倉(cāng)開倉(cāng)收糧,有人送來米1524石,驗(yàn)得米內(nèi)夾谷,抽樣取米一把,數(shù)得254粒內(nèi)夾谷56粒,則這批米內(nèi)夾谷約為( 。
A.1365石B.336石C.168石D.134石

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若y=sinxsin(x+$\frac{π}{3}$+φ)是一個(gè)奇函數(shù),則φ可能的取值是( 。
A.$\frac{2π}{3}$B.$\frac{π}{6}$C.$\frac{π}{2}$D.$\frac{π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

12.設(shè)Tn為數(shù)列{an}的前n項(xiàng)之積,即Tn=a1a2a3…an-1an,若a1=2,$\frac{1}{{{a_n}-1}}-\frac{1}{{{a_{n-1}}-1}}=1(n∈{N^*},n≥2)$,當(dāng)Tn=11時(shí),n的值為10.

查看答案和解析>>

同步練習(xí)冊(cè)答案