直線y=kx+k與圓x2+y2=1位置關(guān)系是
 
考點(diǎn):直線與圓的位置關(guān)系
專題:計(jì)算題,直線與圓
分析:判斷直線恒過(guò)的定點(diǎn)與圓的位置關(guān)系,即可得到結(jié)論.
解答: 解:因?yàn)橹本y=kx+k恒過(guò)(-1,0)且斜率存在,而點(diǎn)(-1,0)在圓x2+y2=1上,
所以直線與圓的位置關(guān)系是相交.
故答案為:相交.
點(diǎn)評(píng):本題考查直線與圓的位置關(guān)系,考查計(jì)算能力,比較基礎(chǔ).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

點(diǎn)P在圓C1:x2+(y+3)2=1上,點(diǎn)Q在圓C2:(x-4)2+y2=4上,則|PQ|的最大值是( 。
A、8B、5C、3D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖為某校語(yǔ)言類專業(yè)N名畢業(yè)生的綜合測(cè)評(píng)成績(jī)(百分制)分布直方圖,已知80~90分?jǐn)?shù)段的學(xué)員數(shù)為21人.
(Ⅰ)求該專業(yè)畢業(yè)總?cè)藬?shù)N和90~95分?jǐn)?shù)段內(nèi)的人數(shù)n;
(Ⅱ)現(xiàn)欲將90~95分?jǐn)?shù)段內(nèi)的n名人分配到幾所學(xué)校,從中安排2人到甲學(xué)校去,若n人中僅有兩名男生,求安排結(jié)果至少有一名男生的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

雙曲線
x2
36
-
y2
64
=1的焦點(diǎn)坐標(biāo)是(  )
A、(0,-10),(0,10)
B、(-10,0),(10,0)
C、(-2
7
,0),(2
7
,0)
D、(0,-2
7
),(0,2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)F為雙曲線
x2
a2
-
y2
b2
=1右焦點(diǎn),P是雙曲線上的點(diǎn),若它的漸近線上,存在一點(diǎn)Q使得|FP|=2|PQ|,則雙曲線離心率的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2+
48
x
,x∈[-3,-1].
(1)求f(x)的值域;
(2)設(shè)a≥1,函數(shù)g(x)=x3-3a2x+14a-1,若對(duì)于任意x1∈[-3,-1],總存在x0∈[0,1],使得g(x0)=f(x1)成立,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f(x)為偶函數(shù),且當(dāng)x≥0時(shí),f(x)=(
1
4
x,又函數(shù)g(x)=|xsinπx|,則函數(shù)h(x)=f(x)-g(x)在[-
1
2
,2]上的零點(diǎn)的個(gè)數(shù)為( 。﹤(gè).
A、3B、4C、5D、6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)函數(shù)f1(x)=x,f2(x)=log2014x,f3(x)=
1
x
,ai=
i
2015
 i=1,2,…,2015,記Ik=|fk(a2)-fk(a1)|+|fk(a3)-fk(a2)|+…+|fk(a2015)-fk(a2014)|,k=1,2,3 則(  )
A、I1<I3<I2
B、I1<I2<I3
C、I2<I1<I3
D、I3<I2<I1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

以(2,0)為圓心,經(jīng)過(guò)原點(diǎn)的圓方程為( 。
A、(x+2)2+y2=4
B、(x-2)2+y2=4
C、(x+2)2+y2=2
D、(x-2)2+y2=2

查看答案和解析>>

同步練習(xí)冊(cè)答案