分析 (1)利用向量垂直的坐標運算,正弦定理可得c2=a2+b2-ab,由余弦定理可得cosC=$\frac{1}{2}$,結(jié)合范圍C∈(0°,180°),可求C的值.
(2)利用余弦定理,基本不等式可求(ab)max=3,利用三角形的面積公式即可計算得解.
解答 (本題滿分為12分)
解:(1)∵向量$\overrightarrow p$=(a,sinB+sinC),$\overrightarrow q$=(sinA-sinB,b-c),且$\overrightarrow p$⊥$\overrightarrow q$,
∴a(sinA-sinB)+(b-c)(sinB+sinC),
∴c2=a2+b2-ab,
∴由余弦定理可得:cosC=$\frac{1}{2}$,
∵C∈(0°,180°),
∴C=60°…6分
(2)∵c2=3=a2+b2-ab≥2ab-ab=ab,
∴(ab)max=3,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\frac{3\sqrt{3}}{4}$,即△ABC面積的最大值為$\frac{3\sqrt{3}}{4}$,當且僅當a=b=c時取得…12分
點評 本題主要考查了向量垂直的坐標運算,正弦定理,余弦定理,基本不等式,三角形的面積公式在解三角形中的應用,考查了轉(zhuǎn)化思想,屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0.2 | B. | 0.4 | C. | 0.6 | D. | 0.8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | x與y正相關,x與z負相關 | B. | x與y正相關,x與z正相關 | ||
C. | x與y負相關,x與z正相關 | D. | x與y負相關,x與z負相關 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{1}{2}$ | B. | 2 | C. | $\frac{1}{3}$ | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 6 | B. | -6 | C. | 8 | D. | -8 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com