如圖,長(zhǎng)為20m的鐵絲網(wǎng),一邊靠墻,圍成三個(gè)大小相等、緊緊相連的長(zhǎng)方形,那么長(zhǎng)方形長(zhǎng)、寬、各為多少時(shí),三個(gè)長(zhǎng)方形的面積和最大?
小長(zhǎng)方形的長(zhǎng)和寬分別是,2.5時(shí),三個(gè)長(zhǎng)方形的面積最大為25.
解析試題分析:通過(guò)假設(shè)小長(zhǎng)方形的一邊再根據(jù)周長(zhǎng)為20m,即可表示出小長(zhǎng)方形的另一邊.因?yàn)檫@三個(gè)長(zhǎng)方形是大小相等長(zhǎng)方形,所以可以表示出三個(gè)長(zhǎng)方形的面積和并求出面積的最大值.本小題主要是以二次函數(shù)的最值為知識(shí)點(diǎn)形成一個(gè)簡(jiǎn)單的應(yīng)用題.
試題解析:設(shè)長(zhǎng)方形長(zhǎng)為x m,則寬為 m,所以,總面積= =.所以,當(dāng)時(shí),總面積最大,為25,此時(shí),長(zhǎng)方形長(zhǎng)為2.5 m,寬為 m.
考點(diǎn):1.二次函數(shù)的應(yīng)用.2.二次最的求法.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知二次函數(shù)f(x)=ax2+x,若對(duì)任意x1、x2∈R,恒有2f≤f(x1)+f(x2)成立,不等式f(x)<0的解集為A.
(1)求集合A;
(2)設(shè)集合B={x||x+4|<a},若集合B是集合A的子集,求a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
已知函數(shù).
(1)若,當(dāng)時(shí),求的取值范圍;
(2)若定義在上奇函數(shù)滿足,且當(dāng)時(shí),,求在上的反函數(shù);
(3)若關(guān)于的不等式在區(qū)間上有解,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某種商品原來(lái)每件售價(jià)為25元,年銷售8萬(wàn)件.
(1)據(jù)市場(chǎng)調(diào)查,若價(jià)格每提高1元,銷售量將相應(yīng)減少2000件,要使銷售的總收入不低于原收入,該商品每件定價(jià)最多為多少元?
(2)為了擴(kuò)大該商品的影響力,提高年銷售量.公司決定明年對(duì)該商品進(jìn)行全面技術(shù)革新和營(yíng)銷策略改革,并提高定價(jià)到元.公司擬投入萬(wàn)元作為技改費(fèi)用,投入50萬(wàn)元作為固定宣傳費(fèi)用,投入萬(wàn)元作為浮動(dòng)宣傳費(fèi)用.試問(wèn):當(dāng)該商品明年的銷售量至少應(yīng)達(dá)到多少萬(wàn)件時(shí),才可能使明年的銷售收入不低于原收入與總投入之和?并求出此時(shí)商品的每件定價(jià).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
提高過(guò)江大橋的車(chē)輛通行能力可改善整個(gè)城市的交通狀況.在一般情況下,大橋上的車(chē)流速度v(單位:千米/小時(shí))是車(chē)流密度(單位:輛/千米)的函數(shù).當(dāng)橋上的的車(chē)流密度達(dá)到200輛/千米時(shí),造成堵塞,此時(shí)車(chē)流速度為0;當(dāng)車(chē)流密度不超過(guò)20輛/千米時(shí),車(chē)流速度為60千米/小時(shí),研究表明:當(dāng)時(shí),車(chē)流速度是車(chē)流密度x的一次函數(shù).
(Ⅰ)當(dāng)時(shí),求函數(shù)的表達(dá)式;
(Ⅱ)當(dāng)車(chē)流密度為多大時(shí),車(chē)流量(單位時(shí)間內(nèi)通過(guò)橋上某觀察點(diǎn)的車(chē)輛數(shù),單位:輛/每小時(shí))可以達(dá)到最大,并求出最大值(精確到1輛/小時(shí)).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
某企業(yè)生產(chǎn)某種商品噸,此時(shí)所需生產(chǎn)費(fèi)用為()萬(wàn)元,當(dāng)出售這種商品時(shí),每噸價(jià)格為萬(wàn)元,這里(為常數(shù),)
(1)為了使這種商品的生產(chǎn)費(fèi)用平均每噸最低,那么這種商品的產(chǎn)量應(yīng)為多少噸?
(2)如果生產(chǎn)出來(lái)的商品能全部賣(mài)完,當(dāng)產(chǎn)量是120噸時(shí)企業(yè)利潤(rùn)最大,此時(shí)出售價(jià)格是每噸160萬(wàn)元,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
湖北省第十四屆運(yùn)動(dòng)會(huì)紀(jì)念章委托某專營(yíng)店銷售,每枚進(jìn)價(jià)5元,同時(shí)每銷售一枚這種紀(jì)念章需向荊州籌委會(huì)交特許經(jīng)營(yíng)管理費(fèi)2元,預(yù)計(jì)這種紀(jì)念章以每枚20元的價(jià)格銷售時(shí)該店一年可銷售2000枚,經(jīng)過(guò)市場(chǎng)調(diào)研發(fā)現(xiàn)每枚紀(jì)念章的銷售價(jià)格在每枚20元的基礎(chǔ)上每減少一元?jiǎng)t增加銷售400枚,而每增加一元?jiǎng)t減少銷售100枚,現(xiàn)設(shè)每枚紀(jì)念章的銷售價(jià)格為元,為整數(shù).
(1)寫(xiě)出該專營(yíng)店一年內(nèi)銷售這種紀(jì)念章所獲利潤(rùn)(元)與每枚紀(jì)念章的銷售價(jià)格(元)的函數(shù)關(guān)系式(并寫(xiě)出這個(gè)函數(shù)的定義域);
(2)當(dāng)每紀(jì)念章銷售價(jià)格為多少元時(shí),該特許專營(yíng)店一年內(nèi)利潤(rùn)(元)最大,并求出最大值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com