在空間中兩兩垂直的平面最多有
 
個(gè).
考點(diǎn):平面與平面之間的位置關(guān)系
專題:空間位置關(guān)系與距離
分析:根據(jù)兩個(gè)平面相交形成一條直線,而過一點(diǎn)兩兩垂直的直線最多畫3條,3個(gè)平面最多形成3條相交線,可得答案.
解答: 解:在空間兩兩垂直的平面最多有3個(gè),
理由:兩個(gè)平面相交形成一條直線,而過一點(diǎn)兩兩垂直的直線最多畫3條,3個(gè)平面最多形成3條相交線.
故答案為:3.
點(diǎn)評:本題考查了空間面面關(guān)系的判斷,考查了面面垂直的判斷和空間想象能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=
1
ex-1
+tanx,則f(-2)+f(-1)+f(1)+f(2)=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓E:
x2
a2
+
y2
b2
=1(a>b>0)的右頂點(diǎn)為A(a,0),離心率為
5
3
,過點(diǎn)A的直線交橢圓于另一點(diǎn)B,若AB的中點(diǎn)坐標(biāo)為(1,-
2
2
3
),則E的方程為(  )
A、
x2
18
+
y2
10
=1
B、
x2
18
+
y2
8
=1
C、
x2
9
+
y2
5
=1
D、
x2
9
+
y2
4
=1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=
1
xlnx
的單調(diào)減區(qū)間是( 。
A、(0,
1
e
B、(
1
e
,+∞)
C、(
1
e
,1)∪(1,+∞)
D、( 
1
e
,1),(1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=ax-ln(x+1)a+1(x>-1,a∈R).
(1)設(shè)a>0,x>0,求證:f(x)>-x;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)求證:
ln2
22
+
ln3
32
+…+
lnn
n2
n
2
-
5
8
(n為正整數(shù)).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知cos(
π
4
+x)=
3
5
,求
sin2x-2sin2x
1-tanx
的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

2013年某時(shí)刻,在釣魚島附近的海岸A處發(fā)現(xiàn)北偏東45°方向,距A處(
3
-1)海里的B處有一艘日本走私船,在A處北偏西75°方向,距A處2海里的C處的中國巡邏艦,奉命以10
3
海里/時(shí)的速度追截日本走私船,此時(shí)日本走私船正以10海里/時(shí)的速度,從B處向北偏東30°方向逃竄.問:中國巡邏艦沿什么方向行駛才能最快截獲日本走私船?并求出所需時(shí)間.(改編題)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=
-sinx
+
cosx
定義域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,2),B(
1
2
,
5
2
)是函數(shù)f(x)=
ax2+b
x
的圖象上的兩點(diǎn).
(1)求函數(shù)f(x)的解析式并寫出定義域;
(2)判斷f(x)在區(qū)間(-∞,-1)上的單調(diào)性,并用定義法加以證明.

查看答案和解析>>

同步練習(xí)冊答案