在正四棱柱ABCDA1B1C1D1中,AA1=2AB,E為AA1的中點,則異面直線BE與CD1所成角的余弦值為( )
A. | B. | C. | D. |
科目:高中數(shù)學 來源: 題型:單選題
以下四個命題中,正確的有幾個( )
①直線a,b與平面a所成角相等,則a∥b;②兩直線a∥b,直線a∥平面a,則必有b∥平面a;③ 一直線與平面的一斜線在平面a內(nèi)的射影垂直,則該直線必與斜線垂直;④兩點A,B與平面a的距離相等,則直線AB∥平面a
A 0個 B 1個 C 2個 D 3個
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
如圖,正方形ACDE與等腰直角三角形ACB所在的平面互相垂直,且AC=BC=2,∠ACB=90°,F,G分別是線段AE,BC的中點,則AD與GF所成的角的余弦值為( )
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
正四面體ABCD的棱長為1,其中線段AB平面,E,F(xiàn)分別是線段AD和BC的中點,當正四面體繞以AB為軸旋轉(zhuǎn)時,線段EF在平面上的射影長的范圍是( )
A.[0,] | B.[,] |
C.[,] | D.[,] |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
如圖,已知六棱錐P-ABCDEF的底面是正六邊形,PA⊥平面ABC,PA=2AB,則下列結論正確的是( )
A.PB⊥AD |
B.平面PAB⊥平面PBC |
C.直線BC∥平面PAE |
D.直線PD與平面ABC所成的角為45° |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
[2013·廣東高考]設m,n是兩條不同的直線,α,β是兩個不同的平面.下列命題中正確的是( )
A.若α⊥β,m?α,n?β,則m⊥n |
B.若α∥β,m?α,n?β,則m∥n |
C.若m⊥n,m?α,n?β,則α⊥β |
D.若m⊥α,m∥n,n∥β,則α⊥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
(2013•浙江)設m、n是兩條不同的直線,α、β是兩個不同的平面,( 。
A.若m∥α,n∥α,則m∥n | B.若m∥α,m∥β,則α∥β | C.若m∥n,m⊥α,則n⊥α | D.若m∥α,α⊥β,則m⊥β |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:單選題
設是不同的直線,是不同的平面,有以下四個命題:
①若,,則
②若,,則
③若,,則
④若,,則 .
其中真命題的序號為( )
A.①③ | B.②③ | C.①④ | D.②④ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com